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OUTLINE: 
1. Additional ROC curves for the simulation study 
2. Patterns of gene expression based on the joint analysis of cell cycle and 

sporulation data. 
3. Patterns of gene expression based on the analysis of individual datasets (cell cycle 

and sporulation) separately. 
4. Prior and posterior conditional probability distributions in the context-specific 

infinite mixture model. 
5. Dynamic annealing modification of the Gibbs sampler. 
6. Computational complexity and run times 

1. Additional ROC curves for the simulation study 
Figure S1: ROC curves for different levels of precision in specifying contexts. 
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Posterior pairwise probabilities are valid measures of statistical significance: In 
Figure 5 we plotted observed false positive rates against corresponding statistical 
significance levels from the finite and infinite mixture analyses (Medvedovic and Guo 
2004). Given a significance level α, all gene-pairs whose PPP was lower than α were 
assumed to belong to different patterns. For a valid statistical procedure the false positive 
rates following this decision making scheme should be less than α for all α levels. As the 
noise in the data increases, the finite mixture model based PPP’s become progressively 
worse as estimates of statistical significance, especially in the range relevant for assessing 
statistical significance of differences, between 0 and 0.1. On the other hand PPPs based on 
the infinite mixture model remain valid measures of statistical significance at all noise 
levels. 

Figure S2: Posterior probabilities as measures of statistical significance. A) Simple 
infinite mixtures. B) Context-specific infinite mixtures. C) Finite mixtures. D, E and F 
are “zoomed-in” versions of A, B and C respectively. 
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2. Patterns of gene expression based on the joint analysis of cell 
cycle and sporulation data 
Hierarchical clustering based on CSIMM for 135 genes which were co-clustered with at 
least one other gene after cutting the tree at the average linkage distance of 0.05 is 
displayed in Figure S3. The red-green heatmap depicts the gene expression levels, blue 
heatmap specifies membership in different KEGG pathways, and the yellow heatmap 
specifies the binding of a specific transcription factors in “Chip-on-Chip” experiments 
(3).  The hierarchical tree in Figure S3 was cut in 8 clusters. Six of these clusters had 
more than two genes and they were tested for over-representation of genes whose 
promoters are substrates of any one single transcription factor using the Fisher’s exact 
test. Eight transcription factors were significantly associated with at least one of the 
cluster (Fisher’s exact p-value<0.05). It is interesting that two “sporulation clusters” 
(denoted by the black bar on the right-hand side of the heatmap) both correlate with the 
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transcription factor SUM1 which seems to be involved in both sporulation and cell-cycle 
regulation (4). This suggests the functional relatedness of genes in these clusters which 
are not associated with any KEGG pathway.  
In comparison, cutting the tree formed by the Euclidian-distance based hierarchical 
clustering to obtain 135 genes that were co-clustered with at least one other gene 
generated diffused patterns without any obvious clustering structure (Figure S4).  
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Figure S3: CSIMM clustering for 135 “closest” genes. 
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 Figure S4: Euclidian distance based clustering for 135 “closest” genes. 
        

 

S
K

1 
0h

 –
12

h

W
30

3 
0h

 –
12

h

C
el

l c
yc

le
 1

C
el

l c
yc

le
 2

S
K

1 
0h

 –
12

h

W
30

3 
0h

 –
12

h

C
el

l c
yc

le
 1

C
el

l c
yc

le
 2

 5



3. Patterns of gene expression based on the analysis of individual 
datasets (cell cycle and sporulation) separately 
In the main text of the paper we included ROC curves for individual data sets 
(sporulation and cell cycle) based on again using CSIMM approach in which data from 
two strains of yeas (in sporulation experiments) and data from two successive cell-cycles 
(cell cycle data) were designated as different contexts. This was motivated by the fact 
that such approaches offered higher precision than the traditional analyses that would not 
distinguish between such contexts (Figure S5) and we wanted to demonstrate the 
increased precision of combining the sporulation and cell cycle datasets was not an 
artifact of an inferior analytical approach in the case of individual datasets. Here we 
examine further the characteristics of gene expression patterns generated based on 
individual datasets alone (Figure S6, S7, S8 and S9). Results are very similar to what we 
observed in the joint analysis of both datasets. The CSIMM approach results in clearly 
defined and functionally relevant clusters, while Euclidian-distance based clusterings are 
diffused without very few clearly defined and meaningful patterns. 
 
 

Figure S5: ROC curves for cell cycle and sporulation data analyzed separately. 
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Figure S6: CSIMM clustering for 135 “closest” genes based only on cell cycle data. 
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Figure S7 Euclidian distance based clustering for 135 “closest” genes based only on cell 
cycle data. 
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Figure S8 CSIMM clustering for 135 “closest” genes based only on sporulation data. 
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Figure S9 Euclidian distance based clustering for 135 “closest” genes based only on 
sporulation data. 
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4. Prior and posterior conditional probability distributions in the context-
specific infinite mixture model: 

Variables in the model: 
xi=(xi1, xi2,…, xiM) , i=1,…,T observed gene expression profiles for all T genes 
µq=(µq1,…, µqM), q=1,…,Q the mean profile for global cluster q 
xi

f=  where r’)x,....,(x
fff rr' i1r' i ++ f=r1+…+rf-1, f=1,…,R is the expression profile for gene i 

within context f, i=1,…,Q, f=1,…,R 
*
tfµ , mean expression profile for the local cluster t within context f 

M=(µ1,…,µQ) 
S=(Σ1,…,ΣQ), where each Σq is a diagonal matrix with context-specific cluster 
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τ=(τ1,…,τR), β=(β1,…, βR), φ=(φ1,…, φR). 
 
The joint distribution of all variables from the model in Figure 1 of the paper: 
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The posterior distributions for C and L are now: 
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5. Dynamic annealing modification of the Gibbs sampler. 
Two aspects of the Gibbs sampler convergence that generally need to be assessed are 

the appropriateness of the “burn-in” period, after which a Gibbs sampler has attained its 
stationary distribution, and the mixing of the sampler, which describes how well a finite 
sample obtained by Gibbs sampler approximates the target distribution. It has generally 
been well documented that the simple Gibbs sampler often has poor mixing properties in 
when fitting finite or infinite mixture models (1, 2). In such situations, the sampler will be 
unable to describe the whole posterior distribution in a computationally feasible number 
of steps. This is often due to the sampler getting trapped in a sub-optimal mode of the 
posterior distribution resulting in sub-optimal clustering results and inappropriate 
confidence estimates. Previously, we described a heuristic algorithm for “heating up” the 
Markov chain described by the Gibbs sampler by using “reverse annealing.” The optimal 
annealing schedule was chosen based on running a significant number of independent 
chains with different maximum annealing constants. However, it turned out that in some 
situations choosing the appropriate parameters in such a way was virtually impossible. 
Therefore we developed a heuristic algorithm that adjusts the annealing exponent 
dynamically. Consequently, only a single run is needed to estimate the posterior 
distribution. 

If π(.) is the target posterior distribution, “reverse annealing” refers to “flattening” of 

the posterior distribution using the transformation 1   ,
)(
)( )()( <= ξ

ξ
ππ

ξ
ξ

K
xx , where K(ξ) is the 

normalizing constant. Based on this general idea, if p(ci=j|C-i, Θ) is the conditional 
posterior probability of placing the ith profile into the jth cluster then “flattened 
probabilities” are defined as  

1   ,
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Since the mixing problem with the Gibbs sampler for the IM model can be 
particularly pronounced in its inability to generate new clusters, we keep track of the 
posterior probability of placing a profile in a new cluster. If this probability pnew is below 
the given threshold pmin, we decrease ξ by the value ξstep. If pnew is above pmin, we 
increase ξ by ξstep. Possible values of ξ are further constrained by the requirement that 
0<ξmin<ξ<ξmax≤1. Our modified Gibbs sampler now proceeds by generating ncold samples 
from the unmodified conditional posteriors (cold cycles). It then generates a single 
sample using “heated” classification probabilities (heated cycle). The pnew from the 
heated cycle is used to increase or decrease the value of ξ by ξstep. However, only the 
samples from “cold” cycles are used in the estimation of the posterior distribution of 
clusterings. We established a set of appropriate parameters by extensive testing on both 
simulated and real world data (ncold=1, ξmin=0.01, ξmax=1, pnew=0.01 and pstep=0.01). All 
analyses presented here for both CSIMM and the simple IMM model used this set of 
dynamic annealing parameters. These values are also set as default values in the GIMM 
software package that can be downloaded from our web page and user is not expected to 
supply different values for different datasets.  

6. Computational complexity and run times. 
The Gibbs sampling algorithm described here is fairly computationally complex. The 
number of mathematical operations for a single iteration is proportional to 
(M*T*Q+Q*(r1*L1+…+ rR*LR)) where M is the dimension of the global patterns, T is 
the number of expression profiles being clustered, Q is the average number of global 
clusters, rf is the dimensionality of the context f and Lf is the number of local clusters 
within context f.  
To achieve the precision of the analysis presented in this paper, it suffice to run 20,000 
iterations of the Gibbs sampler. First 10,000 are discarded as “burn-in” and second 
10,000 are used to calculate posterior pairwise probabilities of co-expression. Computing 
times will obviously depend on the capacity of the computing platform. We timed the 
execution times for several scenarios using the code compiled with Intel C++ compiler 
running on the dual 3.6 GHz Xeon machine under Suse Linux 9.2. It took 182 minutes 
for the Gibbs sampler to generate 20,000 samples on the full datasets (5685 genes across 
4 contexts with total of 31 experiments). We also recorded execution times on smaller 
problems after applying a traditional “variation filter”. It took 44 minutes to cluster 2842 
most variable genes (top 50%), 28 minutes for 1421 (top 25%) most variable genes, and 
only 10 minutes to cluster 569 (top 10%) most variable genes. On the other hand, the 
execution time for all 5685 genes on just sporulation data (2 contexts with total of 15 
experiments) took 114 minutes.  
For the reasons unclear to us, execution times on the 3GHz Xeon Windows boxes with 
the code compiled using the MS Visual C++ compiler were significantly longer (24 hours 
for the full dataset, and 30 minutes for clustering 569 most variable genes). Even after 
accounting for the fact that Windows code runs on a single and somewhat slower CPU, 
the run-times are disproportionally long. 
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