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1. Additional ROC curves for the simulation study
Figure S1: ROC curves for different levels of precision in specifying contexts.
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Posterior pairwise probabilities are valid measures of statistical significance: In
Figure 5 we plotted observed false positive rates against corresponding statistical
significance levels from the finite and infinite mixture analyses (Medvedovic and Guo
2004). Given a significance level a, all gene-pairs whose PPP was lower than a were
assumed to belong to different patterns. For a valid statistical procedure the false positive
rates following this decision making scheme should be less than o for all a levels. As the
noise in the data increases, the finite mixture model based PPP’s become progressively
worse as estimates of statistical significance, especially in the range relevant for assessing
statistical significance of differences, between 0 and 0.1. On the other hand PPPs based on
the infinite mixture model remain valid measures of statistical significance at all noise
levels.

Figure S2: Posterior probabilities as measures of statistical significance. A) Simple
infinite mixtures. B) Context-specific infinite mixtures. C) Finite mixtures. D, E and F
are “zoomed-in” versions of A, B and C respectively.
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2. Patterns of gene expression based on the joint analysis of cell
cycle and sporulation data

Hierarchical clustering based on CSIMM for 135 genes which were co-clustered with at
least one other gene after cutting the tree at the average linkage distance of 0.05 is
displayed in Figure S3. The red-green heatmap depicts the gene expression levels, blue
heatmap specifies membership in different KEGG pathways, and the yellow heatmap
specifies the binding of a specific transcription factors in “Chip-on-Chip” experiments
(3). The hierarchical tree in Figure S3 was cut in 8 clusters. Six of these clusters had
more than two genes and they were tested for over-representation of genes whose
promoters are substrates of any one single transcription factor using the Fisher’s exact
test. Eight transcription factors were significantly associated with at least one of the
cluster (Fisher’s exact p-value<0.05). It is interesting that two “sporulation clusters”
(denoted by the black bar on the right-hand side of the heatmap) both correlate with the



transcription factor SUM1 which seems to be involved in both sporulation and cell-cycle
regulation (4). This suggests the functional relatedness of genes in these clusters which
are not associated with any KEGG pathway.

In comparison, cutting the tree formed by the Euclidian-distance based hierarchical
clustering to obtain 135 genes that were co-clustered with at least one other gene
generated diffused patterns without any obvious clustering structure (Figure S4).



Figure S3: CSIMM clustering for 135 “closest” genes.
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Figure S4: Euclidian distance based clustering for 135 “closest” genes.
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3. Patterns of gene expression based on the analysis of individual
datasets (cell cycle and sporulation) separately

In the main text of the paper we included ROC curves for individual data sets
(sporulation and cell cycle) based on again using CSIMM approach in which data from
two strains of yeas (in sporulation experiments) and data from two successive cell-cycles
(cell cycle data) were designated as different contexts. This was motivated by the fact
that such approaches offered higher precision than the traditional analyses that would not
distinguish between such contexts (Figure S5) and we wanted to demonstrate the
increased precision of combining the sporulation and cell cycle datasets was not an
artifact of an inferior analytical approach in the case of individual datasets. Here we
examine further the characteristics of gene expression patterns generated based on
individual datasets alone (Figure S6, S7, S8 and S9). Results are very similar to what we
observed in the joint analysis of both datasets. The CSIMM approach results in clearly
defined and functionally relevant clusters, while Euclidian-distance based clusterings are
diffused without very few clearly defined and meaningful patterns.

Figure S5: ROC curves for cell cycle and sporulation data analyzed separately.
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Figure S6: CSIMM clustering for 135 “closest” genes based only on cell cycle data.
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Figure S7 Euclidian distance based clustering for 135 “closest” genes based only on cell
cycle data.
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Figure S8 CSIMM clustering for 135 “closest” genes based only on sporulation data.
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Figure S9 Euclidian distance based clustering for 135 “closest” genes based only on
sporulation data.
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4. Prior and posterior conditional probability distributions in the context-
specific infinite mixture model:

Variables in the model:
xi=(Xi1, Xi2,--.» XiM) » 1=1,..., T observed gene expression profiles for all T genes
Ue=(Hqt,- - -» Hqm), 9=1,...,Q the mean profile for global cluster q

xifz (x ) where r’&=r;+...+1e, =1,...,R is the expression profile for gene i

irp+17"" - X ir'p+rg

within context f, i=1,...,Q, f=1,....R

i , mean expression profile for the local cluster t within context f

M=(p1,...,1Q)
S=(Zi,...,.2q), where each X, is a diagonal matrix with context-specific cluster
variances on the diagonal. That is X =diag( (qu, fll),(0(212,....,cflz),...,(cflR,....,cflR))

M= (1] e Do (1R e R )]
S’=[X},....Zr], where I} = (o)1 for £=1,....R

Hyperparameters 1, B and ¢ are all assumed to be context-specific:

T=(‘Cl,...,’ER), B=(Bl,..., BR), ¢=(¢1,..., ¢R)

The joint distribution of all variables from the model in Figure 1 of the paper:
p(X, C, L, M, M’, S, a,a, %, 7, B, §) = p(X| C, M, S)p(C|o)p(MIL,M)p(S|B, $)
P(L|C.a)p(M [A, T)p(c)p(2)pA)p(T)P(BIP()

Conditional distributions given parent nodes:
p(xi |Ci =q, M,S)= fN (Xi |Hq,2q) .

* * * * * £ * *
P((q1sRq2oBqr) L M 0) = (fN (g1 IR 1521), TN (g2 (L ,25Z2)55 TN (R (B 2R ER)

n_ o .
¢;=q|C,,a)o = c; #Cy,1'#1|C,a) i=1,..., T, where n;
p(ci =q] Vo L Qs |Caa)oc i

is the number of proﬁles placed in global cluster q not counting the profile 1

gt

p(qu t|Ca) Q : _ a :Q p(ka;thf

clusters currently placed in local cluster t within context f without counting the q™ global
cluster

-gft 1s the number of global

(s | 2p,7p) = fry (g | 2p, 77 D) Pt [Br.of) = fe(cmﬁtf Bf;"f) LR
1 oy 11
_f f— = f —,
P(os [o3p) (3(<Pf|2 ) PBs) G(Bf|2 2)
2 1 oy 2 2
p(rf|0xf):fG(Tf|_» ) P(hs [xe,0xe) = Fn (hg [Bye,0xeD)

p(a’) = fe(oc1|l l)
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)] RV -
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The posterior distributions for C and L are now:

ni.
p(ci:q‘c-iaLaxi;Maz)OcT_llfa fN(Xi“lq’Zq)
Y o
D(Ci¢Ciu1¢1|C-i,Xi,llx,6i)°CT_Ha([[fN(xi|pq,2q)p(pq,EqM,r)dpquq])
0_g 5 — * (52
=t X a) oc—— f (X pp,— T
plye=t| X a) Qlia N(Xf“'tfn )

q

a

P(Lys # Lyr, 'k | X a) OCQ-1+a

— * 02 * 02 *
[ NG 122 PO, ) ),
n, n,

where n; is the number of profiles in global cluster q without counting profile i, and

n q 1 the number of global clusters grouped into local cluster t within context f not

f
2 X

counting q™ global cluster, and X =2

g

5. Dynamic annealing modification of the Gibbs sampler.

Two aspects of the Gibbs sampler convergence that generally need to be assessed are
the appropriateness of the “burn-in” period, after which a Gibbs sampler has attained its
stationary distribution, and the mixing of the sampler, which describes how well a finite
sample obtained by Gibbs sampler approximates the target distribution. It has generally
been well documented that the simple Gibbs sampler often has poor mixing properties in
when fitting finite or infinite mixture models (1, 2). In such situations, the sampler will be
unable to describe the whole posterior distribution in a computationally feasible number
of steps. This is often due to the sampler getting trapped in a sub-optimal mode of the
posterior distribution resulting in sub-optimal clustering results and inappropriate
confidence estimates. Previously, we described a heuristic algorithm for “heating up” the
Markov chain described by the Gibbs sampler by using “reverse annealing.” The optimal
annealing schedule was chosen based on running a significant number of independent
chains with different maximum annealing constants. However, it turned out that in some
situations choosing the appropriate parameters in such a way was virtually impossible.
Therefore we developed a heuristic algorithm that adjusts the annealing exponent
dynamically. Consequently, only a single run is needed to estimate the posterior
distribution.

If (.) is the target posterior distribution, “reverse annealing” refers to “flattening” of
the posterior distribution using the transformation z*(x) :”'—(X), £<1, where K(§) is the

K($)
normalizing constant. Based on this general idea, if p(ci=j|C;, ®) is the conditional
posterior probability of placing the i profile into the jth cluster then “flattened
probabilities” are defined as

_p(e =iC,,0)

—ilc..e))
p(c;=jlC,,0) k(&)

¢ <1

13



Since the mixing problem with the Gibbs sampler for the IM model can be
particularly pronounced in its inability to generate new clusters, we keep track of the
posterior probability of placing a profile in a new cluster. If this probability ppew is below
the given threshold pmin, we decrease & by the value Egep. If prew 1S above pumin, We
increase & by Egep. Possible values of & are further constrained by the requirement that
0<Emin<E<Emax<1. Our modified Gibbs sampler now proceeds by generating ng.1q samples
from the unmodified conditional posteriors (cold cycles). It then generates a single
sample using “heated” classification probabilities (heated cycle). The ppew from the
heated cycle is used to increase or decrease the value of & by &y ep. However, only the
samples from “cold” cycles are used in the estimation of the posterior distribution of
clusterings. We established a set of appropriate parameters by extensive testing on both
simulated and real world data (ncoig=1, Emin=0.01, Emax=1, Pnew=0.01 and psiep=0.01). All
analyses presented here for both CSIMM and the simple IMM model used this set of
dynamic annealing parameters. These values are also set as default values in the GIMM
software package that can be downloaded from our web page and user is not expected to
supply different values for different datasets.

6. Computational complexity and run times.

The Gibbs sampling algorithm described here is fairly computationally complex. The
number of mathematical operations for a single iteration is proportional to
(M*T*Q+Q*(r;*L+...+ rr*Lr)) where M is the dimension of the global patterns, T is
the number of expression profiles being clustered, Q is the average number of global
clusters, r¢ is the dimensionality of the context f and L¢ is the number of local clusters
within context f.

To achieve the precision of the analysis presented in this paper, it suffice to run 20,000
iterations of the Gibbs sampler. First 10,000 are discarded as “burn-in” and second
10,000 are used to calculate posterior pairwise probabilities of co-expression. Computing
times will obviously depend on the capacity of the computing platform. We timed the
execution times for several scenarios using the code compiled with Intel C++ compiler
running on the dual 3.6 GHz Xeon machine under Suse Linux 9.2. It took 182 minutes
for the Gibbs sampler to generate 20,000 samples on the full datasets (5685 genes across
4 contexts with total of 31 experiments). We also recorded execution times on smaller
problems after applying a traditional “variation filter”. It took 44 minutes to cluster 2842
most variable genes (top 50%), 28 minutes for 1421 (top 25%) most variable genes, and
only 10 minutes to cluster 569 (top 10%) most variable genes. On the other hand, the
execution time for all 5685 genes on just sporulation data (2 contexts with total of 15
experiments) took 114 minutes.

For the reasons unclear to us, execution times on the 3GHz Xeon Windows boxes with
the code compiled using the MS Visual C++ compiler were significantly longer (24 hours
for the full dataset, and 30 minutes for clustering 569 most variable genes). Even after
accounting for the fact that Windows code runs on a single and somewhat slower CPU,
the run-times are disproportionally long.

14
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