Syllabus COMPUTATIONAL FUNCTIONAL GENOMICS Class meets Tuesday and Thursday 3 Credit Hours

Lectures	Topic
Lecture 1	Basic molecular genetics, the central dogma, microarray technology,
	stochasticity of biological data and biological processes, examples of
	statistical models and inference
Lecture 2	Introduction to R, statistical inference and statistical significance, p-
	value, two-sample t-test, t-distribution, differential expression
Lecture 3	Identifying differentially expressed genes on a genome-wide scale,
	alternatives to simple t-test, Welche's t-test, non-parametric rank-
	based test, paired t-test, multiple comparisons and the Bonferroni
	adjustement, , effects of loess-based normalization
Lecture 4	Single-channel vs Two-channel microarrays, Paired t-test
Lecture 5	limma package, effects of subtracting the background intensities,
	paired t-test using limma
Lecture 6	Multiple comparisons revisited, extreme value distribution, False
	Discover Rates vs the traditional multiple comparison adjustments,
	Lecture 7 The analysis of Affymetrics microarray data
Lecture 8	Multi-factorial experiments, experimental design, statistical power,
	sample size, biological vs technical replicates, generalizability of the
	conclusions, to pool or not to pool biological samples, paired t-test as a
	two-way ANOVA, extracting gene-specific dye effect using three-way
	ANOVA, maximum likelihood, least squared means, checking model
	assumptions
Lecture 9	Cluster analysis of microarray data, hierarchical clustering,
	partitioning methods, similarity/distance measures, linkage principles
Lecture 10	The functional annotation of differentially expressed genes, Gene
	Ontologies, hypergeometric distribution and the Fisher's exact test,
	establishing significance of the clustering results through external
	validation

Lecture 11	Classifying biological samples based on the expression data,	
	identifying informative genes, constructing a classifier, nearest	
	neighbor classification, validation of the classifier, establishing	
	statistical significance vs predictive accuracy	
Lecture 12	Mid-term exam	
Lecture 13	Conditional probabilities, Bayes theorem, Bayesian inference,	
	empirical Bayes, pooling information from different genes	
Lecture 14	Conditional probabilities, Bayes theorem, Bayesian inference,	
	empirical Bayes, pooling information from different genes to identify	
	differentially expressed genes	
Lecture 15	Mixture model for clustering functional genomics data, EM algorithm,	
	mclust, assessing the model fit	
Lecture 16	Bayesian mixtures, Gibbs sampler, the problem of choosing the	
	"correct" model, statistical significance in cluster analysis	
Lecture 17	The product-multinomial model for identifying TF binding motifs,	
	Gibbs sampler	
Lecture 18	The product-multinomial model for identifying TF binding motifs,	
	Gibbs sampler	
Lecture 19	Bayesian networks and general graphical models in functional	
	genomics	

In-class mid-term exam

Final project

Instructor: Mario Medvedovic, Ph.D. (558-8564) 108.1 Kettering Laboratory email: <u>Mario.Medvedovic@uc.edu</u>

Text:

Introductory Statistics with R. Peter Delgraad. Springer-Verlag, NY, 2002. A Primer of Genome Science. Gibson, G., Muse, S.V.

Additional Textbook References:

Statistical methods in bioinformatics: an introduction / Warren J. Ewens, Gregory R. Grant. New York : Springer, 2001.

Bioinformatics : the machine learning approach / Pierre Baldi, Søren Brunak. Cambridge, Mass. : MIT Press, 2001.

Grading:

Mid-term exam:	50
Final project	<u>50</u>
Total	100

Letter grades will be assigned according to the standard procedure (90-100%=A, 80-90%=B, etc). Instructor reserve rights to adjust and/or scale scores from various the projects and assignment.

Projects

Projects will be assigned by the instructor while taking into account individual backgrounds and interests.

Office Hours: By appointment.