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Abstract 

Identifying transcription factors (TF) involved in producing a genome-wide transcriptional profile is an 
essential step in building mechanistic model that can explain observed gene expression data. We 
developed a statistical framework for constructing genome-wide signatures of TF activity, and for using 
such signatures in the analysis of gene expression data produced by complex transcriptional regulatory 
programs. Our framework integrates ChIP-seq data and appropriately matched gene expression profiles 
to identify True REGulatory (TREG) TF-gene interactions. It provides genome-wide quantification of the 
likelihood of regulatory TF-gene interaction that can be used to either identify regulated genes, or as 
genome-wide signature of TF activity. To effectively use ChIP-seq data, we introduce a novel statistical 
model that integrates information from all binding “peaks” within 2Mb window around a gene’s 
transcription start site (TSS), and provides gene-level binding scores and probabilities of regulatory 
interaction. In the second step we integrate these binding scores and regulatory probabilities with gene 
expression data to assess the likelihood of True REGulatory (TREG) TF-gene interactions. We 
demonstrate the advantages of TREG framework in identifying genes regulated by two TFs with widely 
different distribution of functional binding events (ERα and E2f1). We also show that TREG signatures of 
TF activity vastly improve our ability to detect involvement of ERα in producing complex diseases-related 
transcriptional profiles. Through a large study of disease-related transcriptional signatures and 
transcriptional signatures of drug activity, we demonstrate that increase in statistical power associated 
with the use of TREG signatures makes the crucial difference in identifying key targets for treatment, 
and drugs to use for treatment. All methods are implemented in an open-source R package treg. The 
package also contains all data used in the analysis including 494 TREG binding profiles based on ENCODE 
ChIP-seq data. The treg package can be downloaded at http://GenomicsPortals.org. 
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Author Summary 

Knowing transcription factors (TF) that regulate expression of differentially expressed genes is 
essential for understanding signaling cascades and regulatory mechanisms that lead to changes in gene 
expression. We developed methods for constructing gene-level scores (TREG binding scores) measuring 
likelihood that the gene is regulated based on the generative statistical model of ChIP-seq data for all 
genes (TREG binding profile). We also developed methods for integrating TREG binding scores with 
appropriately matched gene expression data to create TREG signatures of the TF activity. We then use 
TREG binding profiles and TREG signatures to identify TFs involved in the disease-related gene 
expression profiles. Two main findings of our study are: 1) TREG binding scores derived from ChIP-seq 
data are more informative than simple alternatives that can be used to summarize ChIP-seq data; and 2) 
TREG signatures that integrate the binding and gene expression data are more sensitive in detecting 
evidence of TF regulatory activity than commonly used alternatives. We show that this advantage of 
TREG signatures can make the difference between being able and not being able to infer TF regulatory 
activity in complex transcriptional profiles. This increased sensitivity was critically important in 
establishing connections between disease and drug signatures. 

Introduction 

The specificity of transcriptional initiation in the genomes of eukaryotes is maintained through 
regulatory programs entailing complex interactions among transcription factors (TF), epigenetic 
modifications of regulatory DNA regions and associated histones, chromatin-remodeling proteins, and 
the basal transcriptional machinery [1]. High-throughput sequencing of immuno-precipitated DNA 
fragments (ChIP-seq) provides means to assess genome-wide expression regulatory events, such as TF-
DNA interactions [2]. Sophisticated statistical methodologies have been developed for identifying TF 
binding events in terms of “peaks” in the distributions of ChIP-seq data [3–8]. The evidence provided by 
ChIP-seq binding data that a gene’s expression is regulated by a TF is a function of the number of peaks, 
their intensity and proximity to the transcription start site (TSS) [9]. Furthermore, binding of a 
transcription factor in a gene’s promoter alone does not always result in transcriptional regulation. In 
the case of highly studied pleiotropic regulator ERα, transcriptional regulation depends on the presence 
of specific co-factors as well as on the type of activating ligand [10,11]. Therefore, the identification of 
true regulatory TF-gene relationships requires per-gene summaries/scores measuring the totality of the 
evidence in ChIP-seq data, integrated with measurements of gene expression levels.  

Current approaches to summarizing binding peaks in order to correlate TF binding with 
transcriptional changes range from simple summaries in proximal gene promoter (e.g. maximum peak 
height within a narrow region around the promoter) [12–14] to weighted sums of peak heights where 
weights are inversely proportional to the distance of the peak to the gene's TSS [9,15]. Currently used 
distance-based weights are dependent on TF-specific tuning constants established through ad-hoc 
examination of the distribution of the peaks [9,12,13].  

Dysregulation of transcriptional programs is intimately related to the progression of cancer [16,17] 
and other human diseases [18,19]. Modulating the behavior of specific TFs is a popular strategy for 
developing new disease treatments [20–23]. Genome-wide transcriptional profiles associated with a 
disease phenotype provide indirect evidence of TF involvement in the etiology of the disease. The most 
common strategy of implicating TF involvement is by computational analysis of genomic regulatory 
regions of differentially expressed genes [24–27]. However, such strategies are not effective when the 
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search needs to include distant enhancers and when concurrent activity of multiple regulatory programs 

lead to “messy” transcriptional signatures. ER-driven proliferation is one such  case where the 
involvement of ERα regulatory program has been difficult to identify in resulting transcriptional profiles 
using the DNA binding motif analysis [27].  

We have developed a comprehensive statistical framework for assessing True REGulatory (TREG) TF-
gene interactions by integrated analysis of ChIP-seq and gene expression data. In the first step we 
introduce a novel two-stage mixture generative statistical model for summarizing “peaks” within 2MB 
window centered around a gene’s TSS. Fitting this two-stage model yields scores and associated 
probabilities of regulation based on ChIP-seq data alone (ie TREG binding profile). We show that our 
approach produces effective summaries for a TF with binding sites clustered in close proximity of TSS 
(E2F1) and a TF known to exhibit regulation through binding to distant enhancers (ERα).  

In the second step we integrate the TREG binding profile with a differential gene expression profile to 
create an integrated TREG signature of TF regulatory activity. We use TREG signatures to detect faint 
signals of ERα regulation in “messy” transcriptional signature, and demonstrate how such analysis can 
yield better drug candidates than simply correlating transcriptional signatures of the disease and the 
drug activity [28–30].  

Results 

An overview of the TREG framework is shown in Fig 1. We start with “peaks” extracted from ChIP-seq 
binding data and differential gene expression profile that eventually yield the integrated TREG signature 
of TF activity (Fig 1A). The foundation of the TREG framework consists of two statistical mixture modules. 
The first mixture model describes the distribution of functional and non-functional “peaks” in ChIP-seq 
TF-gene binding data (Fig 1B). Based on this model, we derive the TF-specific distance weights and 
construct gene-level binding scores (TREG binding scores) measuring the likelihood that a gene is 
regulated by the given TF. The second mixture model describes the distribution of TREG binding scores 
for regulated and non-regulated genes (Fig 1C). This second model provides us with gene-level 
probabilities that genes are regulated by a specific TF based on the ChIP-seq data alone. TREG binding 
scores and associated gene-level probabilities for all genes make up the TREG binding profile. The TREG 
binding profile and differential gene expression profiles are integrated using Generalized Random Set 
(GRS) methodology [31] to produce an integrated genome-wide TREG signature of the TF activity (Fig 
1D). The TREG signature of ERα is used to demonstrate involvement of its regulatory activity in complex 
transcriptional profiles and to mine Connectivity Map Data for inhibitors of its activity.  

The first mixture module: Deriving gene-specific TREG scores (Fig 1B) 

 We assume that observed peaks consist of two populations: Functional peaks that are more likely to 
occur closer to TSS and whose distance to TSS is distributed as an exponential random variable; and, 
Non-functional peaks that are randomly occurring throughout the 2 million base pair genomic region 
centered around the TSS, and whose distances to TSS are distributed as a uniform random variable. The 
distances to TSS of all peaks are then distributed as a mixture of the exponential and the uniform 

distribution (Fig 1, Eq1), where  is the proportion of functional peaks among all observed peaks. We 
define the TREG binding score for gene g as the logarithm of the weighted average of peak intensities, 
using the probability of the peak belonging to the population of “functional peak” as weights (Fig 1 Eq3). 

TREG binding scores provide an effective gene-level measure of TF regulation 
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 We assessed the effectiveness of the TREG binding score by comparison to the simple scoring 
method based on the maximum peak intensity (MPI) within a window of specific size around TSS. The 
two types of scores were evaluated by comparing the enrichment of genes with high evidence of TF 
binding among genes differentially expressed in appropriately matched experiments. For gene 
expression data, we identified genes differentially expressed (two-tailed FDR<0.01) 24h after treating 
MCF-7 cell line with estradiol (E2) with and without pre-treating the cell line with Cycloheximide (CHX) 
[27]. CHX is an inhibitor of protein biosynthesis in eukaryotic organisms. Treatment with E2 after pre-
treatment with CHX (E2+CHX) resulted in differential expression of genes presumed to be directly 

regulated by ER; whereas after E2 treatment without CHX, the majority of differentially expressed 
genes were secondary target genes functionally enriched for cell-cycle genes and reflective of the rapid 
proliferation resulting from the E2 treatment [27]. For the TF binding data, we used ChIP-seq analysis of 

the key proliferation regulator E2f1 in growing mouse embryonic stem (ES) cells [32], and ER binding 
1h after treating MCF-7 cells with estradiol [10]. ChIP-seq data at 1h hour after treatment with E2 is 
correlated with gene expression changes 24h after treatment because of the expected time-delay 
between ERα binding to a gene promoter and the observable change in the gene’s expression level.   

Among differentially expressed genes, enrichment of genes with high TREG binding scores was 
statistically significant for both E2F1 and ERα in both experiments (Table 1). Fig 2 shows the relative 
levels of enrichment for maximum peak intensity (MPI) score over the range of window sizes around 
TSSs in comparison to the TREG binding score. Simple MPI scores never attain the level of statistical 
significance of enrichment attained by TREG binding scores. Furthermore, the performance of the 
simple score is heavily dependent on the specific size of the window used, and expectedly, the optimal 
windows are TF–specific. The optimal window size for E2f1 and ERα is around 1kb and 50kb respectively, 
with maximum statistical significance of enrichment attained for the simple score reaching 42% and 80% 
of the TREG binding score significance, respectively. Similar results were obtained using unweighted sum 
and linear-weighted sum of TF binding peak intensity scores (supplementary results in Text S1 and Fig 
S1). This indicates that TREG binding scores not only provide the best correlation with expression 
changes, but they also obviate the need of knowing the right window size to use in deriving the 
summary measure of TF binding. The calculation of TREG binding scores does not include any free 
parameters that need to be specified in ad-hoc fashion, such as the length of the genomic region around 
TSS for simple scores, or the ad-hoc weighting parameters used in similar scores before [9,15].  

The second mixture module: Gene-level ChIP-Seq binding probability mixture model 

Having constructed gene-specific TREG binding score, our goal was to estimate gene-level 
probabilities of “functional interaction” between a TF and a gene based on these scores. The histogram 
of the TREG binding scores (Fig 1C) clearly shows two populations of TREG binding scores. One 
population with a majority of TREG binding scores being close to zero, representing genes with low 
likelihood of functional TF-gene interaction, and the other populations with TREG binding scores 
distributed in bell-shaped form around the mean slightly higher than 2, representing functional 
interactions. Therefore, we assume that TREG binding scores come from two populations: Scores 
significantly greater than zero representing functional TF-gene interactions which are distributed as a 
Normal random variable; and, scores close to zero representing non-functional interactions which are 
distributed as an exponential random variable. Assuming that the proportion of TREG binding scores 

corresponding to functional interactions is , the distribution of all TREG binding scores is a mixture of 
Normal and exponential probability distribution functions (Fig 1 Eq4). The probability that a TREG 
binding score for gene g (Sg) is functional is defined as the probability of Sg belonging to the normal 
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component (Fig 1 Eq5). The set of TREG binding scores and associated probabilities of the score 
indicated functional TF-gene interaction for all genes in the genome (Sg, pg), g=1,…,G, is the TREG 
binding profile. 

Integrating TREG binding profile and differential gene expression to identify regulated genes 

Identifying genes that both have high probability of “functional” TF binding and are differentially 
expressed is complicated by the need to set arbitrary thresholds for statistical significance. We have 
previously developed a method, based on the Generalized Random Set (GRS) analysis that obviates the 
need for such thresholds when assessing concordance of two differential gene expression profiles [31]. 
Here we apply the GRS framework to assess the concordance between the TREG binding profile and the 
differential gene expression profile (Fig 1 Eq6) (details in Text S1), and to identify genes with statistically 
significant concordance. The results (Table 2) of the analysis generally followed the results based on 
designating differentially expressed genes (Table 1) with the levels of statistical significance being orders 
of magnitude higher in the GRS concordance analysis.  We demonstrate that GRS is producing expected 
distribution of p-values under the null hypothesis by systematically examining empirical cumulative 
distribution functions (ECDFs) of p-values after randomly permuting gene labels in TREG binding profile 
before GRS analysis (supplementary results in Text S1, Fig S2).  We also compared the results of GRS 
analysis with the thresholding approach based on TREG binding probability where gene was placed in 
the “regulated” group if the corresponding TREG probability (pg) was greater than 0.95. Results were 
similar to the GRS analysis (supplemental results Text S1). However, we also show that in the situations 
when binding signal is relatively “faint”, GRS is likely to outperform thresholding approach (Text S1, Fig 
S3). Since these are situations in which the method of concordance analysis will make the difference, the 
GRS is still likely the better default choice for performing the concordance analysis. 

Finally, we integrate at the gene level TREG binding profiles with differential gene expression profiles 
as the contribution of an individual gene to the overall concordance in the GRS concordance statistics eg 
(Fig 1 Eq7). The statistical significance of gene-level GRS statistics is assessed by associated resampling-
based p-values (see methods) which define gene-specific TREG concordance scores (tg, Fig 1, Eq8). The 
vector of such scores for all genes represents the TREG signature of TF activity (Fig1 Eq9).  

The power of TREG binding profiles and TREG signatures in identifying TF targets 

We examined the ability of TREG binding profiles and TREG signatures to identify genes regulated by 

ER and E2f1. Fig 3A contrasts the statistical significance of the enrichment by the computationally 
predicted ERα targets from MSigDB database [33] based on E2+CHX differential gene expression profile 

(Diff Exp), ER TREG binding scores (TREG bind) and integrated TREG signature (TREG sig). In this setting, 
MSigDB targets provide  a “noisy” gold standard since the perfect gold standard does not exist. While all 
three data types provided statistically significant enrichment, the integrated TREG signature showed the 
highest statistical significance of the enrichment. The overall relationship between the TREG binding 
scores, statistical significance of differential gene expression (-log10(p-value) E2+CHX) and the statistical 
significance of TREG concordance scores  (ERα TREG score (sg )) is shown in Fig 3B. The “statistically 
significant" (p-value<0.001) TREG concordance scores (red dots in Fig 3B) required both, a high TREG 
binding score and a high statistical significance of differential expression. Similar analysis of the E2f1 
TREG signature showed a similar pattern (Fig 3C and D), although the overall statistical significance of 
enrichment was much higher for all three data types. These results show that integrated TREG 
signatures are more informative of the regulatory TF-gene relationships than expression or TF binding 
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data alone. TREG binding scores, gene specific concordance statistic, and TREG concordance scores for 
all genes are given in the Table S1. 

Functional analysis of ER and E2F1 TREG signatures 

We further examined ER and E2F1 TREG signatures to determine molecular pathways and biological 
processes regulated by these two TFs and to evaluate benefits of such integrated signatures. We 
assessed the enrichment of genes with high TREG concordance scores in lists of genes related to the 

prototypical function of ER and E2F1.  For the ER signature the list consisted of genes associated with 
the Gene Ontology term "cellular response to estrogen stimulus", and for the E2F1 with the term 
"regulation of mitotic cell cycle". In both cases, integrated TREG signatures showed significantly higher 
statistical significance of enrichment than either TREG binding scores or differential gene expressions 
(Fig 4). Unsupervised enrichment analysis of the two signatures revealed that biological processes 

specifically associated with ER signature were related to the development of the mammary gland (Fig 

5A). Moreover, significant associations between ER-regulated genes and some key developmental 
processes could not have been established using either TF binding or gene expression alone. Likewise, 
processes related to mitotic cell cycle were most highly associated with E2f1 signature (Fig 5B). Results 
of enrichment analysis for all GO terms are provided in Table S2. 

TREG methodology applied to ENCODE TF binding data 

To assess the reproducibility and specificity of our results, we constructed TREG binding signatures 

for all 494 TF ChIP-seq datasets in the Genome Browser ENCODE tables [14,34]. Two gene expression 
profiles in our analysis (E2+CHX and E2) were then systematically compared with 494 ENCODE TREG 

binding profiles. Top 10 most concordant profiles are shown in Fig 6.  Results show that ENCODE ER 
binding profiles correlates equally well with E2+CHX profile as did our original TREG profile (Fig 6A). 

Furthermore, all five ENCODE ER binding profiles correlated better with E2+CHX profile than any other 
ENCODE profile. Similarly, ENCODE binding signatures most concordant with E2 profile (Fig 6B) included 
E2F4, E2F1 and MYC which are all known to be important cell cycle regulators. The statistical significance 
of the concordance was again similar to the levels we observed with the E2f1 binding profile in mouse 
embryonic stem cells. These results indicate that reproducibility of TREG results across different ChIP-
seq datasets and its ability to identify key transcriptional regulators for a given profile. Results of the 
concordance analysis for all ENCODE TREG profiles are in Table S3. 

Finding evidence of ERα activity in complex transcriptional profiles 

The ultimate goal of the TREG framework is to facilitate identification and characterization of 
signatures of TFs regulating disease-related differential gene expression profiles (DRGEP). Here we 
demonstrate the power of TREG signatures and TREG binding scores in elucidating the faint signals of 

ER activity in two complex DRGEPs, the response of MCF-7 cell line 24 hours after treatment with E2 
[27] and differences between ER-  and ER+ breast tumors [35]. In both of these DRGEPs, the signal of 
direct ERα regulation is “drowned out” by the strong secondary proliferation-related transcriptional 
signature, and the standard enrichment analysis of computationally predicted ERα targets in MSigDb 
fails to find evidence of ERα regulation (Fig 7). However, the GRS concordance analysis with both TREG 
binding scores and TREG signatures are highly statistically significant, and the TREG signature which 
integrated binding and transcriptional evidence again shows the highest statistical significance of 
concordance (Fig 7). Additional discussion of these results is provided in supplementary results (Text S1).  
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ER activity in perturbation signatures and disease-related gene expression profiles 

We used the ERα TREG signature to mine a collection of differential gene expression profiles in GEO 
datasets (GDS signatures), and differential gene expression profiles of small drug perturbations (CMAP 
signatures) [29], for evidence of ERα regulatory activity. Fig 8 shows differential gene expression levels 
of top 10 GEO profiles and top 10 drug perturbations based on the statistical significance of the 
concordance between the ERα TREG signature and each differential gene expression profiles. In both 
situations the top transcriptional profiles are obviously related to the ERα activity demonstrating the 
precision of the TREG signature in this setting. Additional results related more specifically to disease-
associated GEO profiles are given in the supplementary results (Text S1). 

Using TREG signatures to connect small molecules, transcription factors, and disease 

Using the DRGEP of up-regulated genes in ER+ and ER – breast tumors in comparison to normal 
mammary epithelium, we mined the Connectivity Map Dataset [29] for putative drugs that could inhibit 
these signatures. The DRGEPs for ER+ and ER- tumors were created by differential expression analysis 
between ER+ tumors and the normal breast tissue (ER+ DRGEP) or ER- tumors and normal breast tissue 
(ER- DRGEP) using the public domain microarray dataset (GSE2740) [36]. We contrasted two distinct 
strategies. The first approach is the classical CMAP approach of searching for concordance in genes up-
regulated in DRGEPs and down-regulated in the drug-signature [28–30]. The second approach relied on 
first elucidating the role of ERα in producing DRGEPs of ER+ and ER- breast cancers, and then searching 
for drugs that can inhibit ERα signature. 

Top five drug candidates for inhibiting ER+ DRGEP, ER- DRGEP and ERα regulatory signature are 
shown in Table 3. The most highly ranked drugs for both ER+ and ER- breast cancer DRGEPs using the 
first approach (i.e. direct concordance between DRGEPs and drug transcriptional signatures) included 
known proliferation inhibitors (e.g. etoposide, pimozide, resveratrol, methotrexate, monobenzone, 
deferoxamine and trifluridine) [37–43].  

As expected, concordance analysis between ER+ and ER- breast cancer DRGEPs and TREG signatures 
of ERα and E2F1 activity demonstrated involvement of E2F1 regulation in both DRGEPs (p-value=7.0x10-

14 for ER+ and p-value=1.3x10-72 for ER-). This indicates increased proliferation in both types of breast 
cancers in comparisons to normal tissue. Expectedly, the involvement of ERα regulation was evident 
only in ER+ DRGEP (p-value=0.0007), but not in ER- DRGEP (p-value=0.14), indicating that the increased 
proliferation is driven by ERα activity only in the ER+ breast cancers. Tamoxifen, raloxifen and 
fulvestrant were among the top five candidate drugs implicated by their ability to inhibit the ERα activity 
through the concordance analysis between ERα signature and CMAP data were (Table 3). Tamoxifen and 
raloxifen are modulators, and fulvestrant is an antagonist of ERα. All three are used in treating ER+ 
cancers [44]. However, the direct concordance analysis between their transcriptional signatures and ER+ 
DRGEP would not implicate them as potential treatments. This is most likely due to the subtle ERα 
signature being overwhelmed by other stronger signals such as the proliferation signature of secondary 
ERα targets [27].  

It is critical to note that alternative approaches to elucidate the role of ERα in producing ER+ breast 
cancer DRGEP would not have been successful.  The standard enrichment analysis against 
computationally predicted ERα targets fails again to provide any evidence of ERα involvement (p-
value=0.7). Furthermore, even the concordance analysis with TREG binding profile fails to provide 
statistically significant association in this case (p-value=0.1). These results demonstrate the sensitivity of 
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the TREG signatures in pinpointing important regulatory mechanisms that can then be exploited in 
identifying the best drug candidates. In the case at hand, the strategy provided an obvious advantage 
over the direct strategy of correlating DRGEPs drug transcriptional signatures [28–30] to search for 
drugs that inhibit the global DRGEPs. The improvement in precision resulting from the use of integrated 
TREG signatures over alternative enrichment strategies that use computationally predicted targets or 
ChIP-seq data alone, can make a critical difference between the failure or success of such analysis.  

Discussion  

The problem of identifying functional TF targets that regulate gene expression, in a specific biological 
context, requires joint considerations of both TF DNA-binding data and the target gene’s expression 
changes. We described a statistical framework for quantifying the evidence of TF-gene interaction from 
ChIP-seq data, and integrating them appropriate gene expression data to construct genome-wide 
signatures of TF activity.  

Two main findings of our study are that 1) TREG binding scores derived from ChIP-seq data alone are 
more informative than simple alternatives that can be used to summarize ChIP-seq data; and 2) TREG 
signatures that integrate the binding and gene expression data are more sensitive in detecting evidence 
of TF regulatory activity than available alternatives. We show that this advantage of TREG signatures can 
make the difference between being able and not being able to infer TF regulatory activity in complex 
transcriptional profiles. This increased sensitivity also showed to be critical in establishing connections 
between disease and drug signatures that would not be possible using currently available strategies.  

Identifying the role of specific TFs in producing disease-related transcriptional profiles is of vital 
importance for understanding the molecular mechanisms underlying disease phenotype. Although it is 
possible to obtain direct measurements of TF activity in disease samples [45], such ChIP-seq profiling is 
technically challenging and systematic profiling of many different TFs is not feasible. Therefore, the 
ability to infer the role of a TF from the transcriptional profiles remains challenging. The most common 
strategy of implicating TF involvement is by computational analysis of genomics regulatory regions of 
differentially expressed genes [24–27], or by searching for enrichment of known targets among 
differentially expressed genes [46]. Here we present an alternative strategy relying on direct 
concordance analysis between TREG signatures of TF activity and disease-related transcriptional profiles. 
When searching for evidence of regulation by the TF with functional binding sites in distant enhancers, 
such as ERα, and “messy” transcriptional signatures resulting from activity of multiple regulatory 
programs, our approach dramatically improves the precision of the analysis.  

Our results indicate that TREG signatures derived from in-vitro experiments (ERα; MCF-7 cells), and 
even from a different organism (E2f1; mouse) provide effective means for analyzing transcriptional 
profiles derived from human tissue samples. This would indicate that TF binding profiles coming from 
any biological system under which TF shows signs of activity might be sufficiently informative to 
construct TREG signatures. In this context the recently released ENCODE project data [14,34] may be 
turned into a powerful tool for detecting TF activity. As a step in this direction, we have created 494 
TREG binding profiles using the ENCODE ChIP-seq data and made it available from the support web-site 
(http://GenomicsPortals.org). Complementary gene expression data generated by directly perturbing 
specific TFs, such as shRNA knock-downs and overexpression experiments can be used to construct 
TREG signatures. For example, transcriptional signatures of such systematic perturbations that is being 
generated by NIH LINCS project (http://LincsProject.org) could provide complementary transcriptional 
profiles for ENCODE ChIP-seq data.  
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Our methods are complementary to methods used to analyze the recently released ENCODE project 
data [14,34]. For some experimental conditions, the ENCODE project provides additional data types that 
can be used in assessing the functionality of TF binding peaks, such as distribution of specific epigenetic 
histone modifications. For discussion on how to possibly incorporate this additional information within 
TREG methodology, please see supplemental discussion (Text S1).  

Up-regulated expression of proliferation genes is a hallmark of neoplastic transformation and 
progression in a whole array of different human cancers [47]. While the core transcriptional signature of 
proliferation is recognizable in a wide range of biological systems and diseases, the events and pathways 
that drive the transcriptional program of proliferation vary widely. Increased expression of proliferation-
associated genes has been associated with poor outcomes in breast cancer patients [48–54]. However, 
the driver mechanisms in many aggressive cancer types are poorly understood. Inhibiting known driver 
pathways, such as ERα signaling in breast cancer often leads to treatment resistant tumors due to 
activation of alternative, poorly understood driver pathways [55,56]. Using the signatures of such “driver 
events/pathways” we can identify candidate drugs capable of inhibiting them. In our analysis of ERα 
activity in ER+ breast cancers we showed that such an approach can highlight connections between 
disease and drug candidates that would be missed by simply correlating disease and drug transcriptional 
signatures [28–30].  

Methods 

Mixture model for summarizing ChIP-seq data and deriving gene-specific TREG scores (Fig 1B) 

We assume that observed peaks consist of two populations: Functional peaks that are more likely to 
occur closer to TSS and whose distance to TSS is distributed as an exponential random variable with the 

parameter ; and, non-functional peaks that are randomly occurring throughout the 2 million base pair 
genomic region centered around the TSS, and whose distances to TSS are distributed as a uniform 
random variable. The distances to TSS of all peaks are then distributed as a mixture of the exponential 

and the uniform distribution (Fig 1, Eq1), where  is the proportion of functional peaks among all 

observed peaks, a is the distance of a peak to the gene's TSS, ( | )
E

f  is the probability density function 

(pdf) of the exponential random variable (rv) with the location parameter , and ( )
U

f  is the pdf of a 

uniform rv on the interval (-106, 106). We use the standard Expectation-Maximization (EM) algorithm 

[57] to estimate the parameters of this mixture model (,) for each TF. Given the estimates ˆˆ( , )  we 

calculate the posterior probability for peak i with distance ai from a TSS to belong to the population of 
“functional peaks” (Fig 1 Eq2). Suppose now that for a gene g, ng is the number of peaks within the 1MB 

window around its TSS (1MB upstream to 1MB downstream), g

k
h is the peak intensity (ie, the maximum 

number of overlapping reads over all positions within the peak), and g

k
a is the distance to TSS of the kth 

such peak (k=1,…,ng). We define the TREG binding score for the gene g as the logarithm of weighted 
average of peak intensities, using the probability of the peak belonging to the population of “functional 

peak” ( g

k
W ) as the weight (Fig 1 Eq3). 

Gene-level ChIP-Seq binding probability mixture model 

We assume that TREG binding scores come from two populations: Scores significantly greater than 
zero representing functional TF-gene interactions which are distributed as a Normal random variable; 
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and, scores close to zero representing non-functional interactions which are distributed as an 
exponential random variable (histogram in Fig 1B). Assuming that the proportion of TREG binding scores 

corresponding to functional interactions is , the  distribution of all TREG binding scores is a mixture of 
Normal and exponential probability distribution functions (Fig 1 Eq4), where S is the TREG binding score, 

( | )
E

f  is pdf of the exponential random variable with the location parameter , and 2
( | , )

N
f   is 

the pdf of a Normal random variable with mean µ and variance 2. We again use the standard EM 

algorithm to estimate the parameters of this mixture model (, , µ, 2) for each TF. Given the 
estimates ˆ ˆ ˆ ˆ( , , , )    , the probability of a TREG binding score for gene g (Sg) being functional is defined 

as the probability of Sg belonging to the normal component (Fig 1 Eq5). The set of TREG binding scores 
and associated probabilities of the score indicated functional TF-gene interaction for all gene in the 
genome (Sg, pg), g=1,…,G, is the TREG binding profile. Additional discussion of motivations for the choice 
of specific distributions is provided in supplemental methods (Text S1).  

EM algorithm: 

Details of the EM algorithm are provided in supplemental methods (Text S1). 

LRpath enrichment analysis 

The enrichment of genes with high TREG and MPI scores among differentially expressed genes (Table 
1, Fig 2) was performed using the logistic regression-based LRpath methodology [58]. LRpath does not 
require thresholding on binding scores but uses such scores as the continuous variable that explains the 
membership of a gene in the “differentially expressed” category. Similarly, LRpath was used to analyze 
enrichment of differentially expressed genes among genes associated with GO terms in Fig 5 and 6. 

Integrating TREG binding profile and differential gene expression to identify regulated genes 

When performing concordance analysis between TREG binding profiles and the two differential gene 
expression profiles of interest (E2+CHX and E2) (Table 2) and constructing TREG signatures in Fig 4,5, 
and 6, we used two-tailed p-values not distinguishing between induction and repression activity. When 
comparing TREG signatures with other DRGEPs (Table 3, and Fig 7 and 8), we account for directionality 
of gene expression changes by using single-tailed p-values for increase in gene expression. This is 
necessary to account for the directionality of the concordance between the TREG signature and the 
DRGEPs. The ERα TREG signatures for this analysis was constructed by the GRS concordance analysis (Fig 
1D) between ERα TREG binding profile and the single tailed p-values for statistically significant up-
regulation of gene expression after E2+CHX treatment of MCF-7 cell line. The genes used for plotting 
heatmaps in Fig 8 were then selected based on the gene-specific p-values of concordance (p-value(eg), 
Fig 1D) being <0.001 (Table S5). The concordance between this ERα TREG signature, and GEO/CMAP 
transcriptional signatures was performed again using the GRS analysis.   

Datasets used in the analyses are described in Text S1. 

Computational methods 

All computational methods are implemented in the R package treg which can be downloaded from 
our web site (http://GenomicsPortals.org). The package also contains processed ChIP-seq data for ERα 
[10], E2f1 and 15 other transcription factors [32], as well as TREG signatures for ERα and E2f1, and 
transcriptional signatures derived from GEO GDS datasets and CMAP drug signatures. We have 

http://genomicsportals.org/
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previously described derivation of CMAP signatures [31]. All functional enrichment analyses were 
performed using the LRpath methodology [58] as implemented in the R package CLEAN [59].  
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Figure legends 

Fig 1. An overview of the TREG framework and statistical models for constructing TREG signatures. 
A) “Peaks” extracted from ChIP-seq binding data and differential gene expression profile that eventually 
yield the integrated TREG signature of TF activity.  B) The exponential-uniform mixture module 
describing the distribution of functional and non-functional “peaks” in ChIP-seq TF-gene binding data. C) 
The exponential-normal mixture module describes the distribution of TREG binding scores for regulated 
and non-regulated genes. D) The Generalized Random Set (GRS) methodology for integrating ChIP-seq 
and differential gene expression data.   

Fig 2. Relative statistical significance of the association between ChIP-seq and differential gene 
expression data for different window sizes. The ratio of -log10(p-value of enrichment) of differentially 
expressed genes (FDR<0.1) among genes with high MPI scores, and -log10(p-value of enrichment) of 
differentially expressed genes among genes with high TREG binding scores. The ratios related to E2f1 
ChIP-seq data and E2 differential gene expression profile are represented by the blue line. The ratios 
related to ERα ChIP-seq data and are represented by the red line. Ratios smaller than 1 indicate higher 
significance of enrichment when using TREG scores, as opposed to maximum peak height within the 
given window. 

Fig 3. Pinpointing regulated genes by integrating binding and differential gene expression data. A) 
Statistical significance of enrichment of computationally predicted ERα targets from MSigDB database 
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using the E2+CHX differential gene expression profile, (Diff Exp), ERα TREG binding scores (TREG bind) 
and the TREG signature integrating expression and ChIP-seq data (TREG sig) (the red line indicate p-
value of 0.05). B) The scatter plot of TREG binding scores against the statistical significance of 
differential gene expression. The red points indicate genes with statistically significant TREG 
concordance scores (tg>-log10(0.01)). The red points were overlaid over the black points which means 
that all significant points are visible C) Statistical significance of enrichment of computationally predicted 
E2F1 targets from MSigDB database using the E2 differential gene expression profile, (Diff Exp), E2f1 
TREG binding scores (TREG bind) and the TREG signature integrating expression and ChIP-seq data (TREG 
sig) (the red line indicate p-value of 0.05). D) The scatter plot of TREG binding scores against the 
statistical significance of differential gene expression as in B. 

Fig 4. Function of regulated genes. Enrichment of ER  and E2F1 targets among genes associated 
with two prototypical functional categories associated with ER  (response to estrogen stimulus) and 
E2F1 (regulation of mitotic cell cycle) function. A) Statistical significance of enrichment of 
computationally predicted genes associated with “response to estrogen stimulus” using the E2+CHX 
differential gene expression profile, (Diff Exp), ERα TREG binding scores (TREG bind) and the TREG 
signature integrating expression and ChIP-seq data (TREG sig) (the red line indicate p-value of 0.05). B) 
Statistical significance of enrichment of computationally predicted genes associated with “regulation of 
mitotic cell cycle” using the E2 differential gene expression profile, (Diff Exp), E2f1 TREG binding scores 
(TREG bind) and the TREG signature integrating expression and ChIP-seq data (TREG sig) (the red line 
indicate p-value of 0.05). 

Fig 5. Distinctive functional roles of ERα and E2F1 targets. Top 10 enriched gene lists associated with 
Gene Ontology terms using the TREG signatures for enrichment analysis. A) Gene lists enriched with ERα 
regulated genes only. B) Gene lists enriched with E2F1 regulated genes only. 

Fig 6. TREG analysis of ENCODE TF binding data. The GRS concordance analysis between E2+CHX and 
E2 expression profiles and 494 ENCODE TREG profiles. The solid red line indicates statistical significance 
cut-off and dashed red line indicates the statistical significance attained with ERα and E2f1 TREG profiles 
we use throughout the paper. Grey symbols/lines in both figures indicate the statistical significance of 
enrichment of genes with high TREG binding scores among Cell cycle genes.  A)  Top 10 ENCODE TREG 
binding profiles most concordant with E2+CHX expression profile. All five ERα ENCODE profiles are at the 
top of the list of the most concordant profiles.  B) Top 10 ENCODE TREG binding profiles most 
concordant with E2 expression profile. Profiles of TFs from E2F-family and the c-Myc profile are among 
the top 10 most concordant signatures. 

Fig 7. Revealing ERα regulatory activity in complex transcriptional profiles. Contrasting traditional 
strategy of searching for enrichment of differentially expressed genes among computationally predicted 
targets (MSigDb) with GRS concordance analysis between differential gene expression profiles with 
TREG binding profile (TREG bind) and TREG signature (TREG sig). Evidence of ERα regulatory activity is in 
the form of the statistical significance (-log(p-value)) for the LRpath enrichment analysis (MSigDb) and 

GRS analysis (TREG bind and TREG sig). The red line indicates the p-value=0.05. A) Evidence of ER 
regulatory activity in generating differential gene expression profile of the response of MCF-7 cell line 24 

hours after treatment with E2. B) Evidence of ER regulatory activity in generating differential gene 
expression profile comparing ER- and ER+ breast tumors.  

Fig 8. Mining for ERα activity in transcriptional perturbation signatures and disease-related gene 
expression profiles. Differential gene expression levels (on log2 scale) for ERα targets with statistically 
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significant ERα TREG concordance scores (p-value<0.01) in transcriptional signatures with the highest 
evidence of ERα regulatory activity. The evidence of ERα regulatory activity consisted of the statistical 
significance of the GRS concordance between ERα TREG signature and the differential gene expression 
profile (blue line to the right of the heatmap). The ERα signature (top row in each heatmap) represents 
the differential expression levels in the E2+CHX profile. A) Top 10 perturbation signatures with highest 
evidence of ERα activity among differential gene expression profiles of small drug perturbations in the 
Connectivity Map dataset. B) Top 10 perturbation signatures with highest evidence of ERα activity 
among differential gene expression profiles of between different sample types in GEO datasets.  

Fig S1. Relative statistical significance of the association between ChIP-seq and differential gene 
expression data for different window sizes and for different summaries of peak intensities. The ratio 
of -log10(p-value of enrichment) of differentially expressed genes (FDR<0.1) among genes with high 
simple scores (MPI, UWS, LWS), and -log10(p-value of enrichment) of differentially expressed genes 
among genes with high TREG binding scores. Red dots correspond to MPI scores, blue dots to UWS 
scores, and the horizontal blue line corresponds to significance attained by the LWS score. A) The ratios 
related to E2f1 ChIP-seq data and E2 differential gene expression profile. B) The ratios related to ERα 
ChIP-seq data and E2+CHX differential gene expression profile. Ratios smaller than 1 indicate higher 
significance of enrichment when using TREG scores. 

Fig S2: Empirical distribution functions of p-values for four GRS concordance analysis between 
differential gene expression profiles (E2+CHX and E2) and all 494 ENCODE TREG binding profiles. For 
each case, 1000 GRS analyses were performed by first randomly permuting gene labels in one of the 
profiles. All Empirical Cumulative Distribution Functions (ECDF) of resulting p-values lie at or below the 
45 degree line p-values<0.5, indicating strict control of Type I error rates. For 11 ENCODE profiles the 
GRS was especially conservative (blue lines). The examination of these 11 TREG profiles indicated 
unusually small number of peaks indicating that in such situations GRS is particularly conservative. A) 
Empirical distribution functions of p-values for four GRS analyses described in this Table 2.  B) E2+CHX 
differential gene expression profiles vs ENCODE TREG binding profiles. C) E2 differential gene expression 
profiles vs ENCODE TREG binding profiles. 

Fig S3: GRS vs simple thresholding to assess correlation between TREG binding scores and 
differential gene expression profiles. To compare the ability of GRS and the simple thresholding to 
detect concordance between TREG binding signatures and differential gene expression signatures, we 
systematically removed genes with strongest TREG binding scores from the E2f1 binding profile and 
gene expression profiles, and calculated p-values of the GRS and the thresholding analysis in such 
reduced datasets. The x axes represents the number of remaining genes in the “regulated” group. Red 
dots represent statistical significance of GRS analysis and blue dots statistical significance of the 
“thresholding” analysis. These results indicate that the GRS analysis will likely have higher sensitivity 
when the “concordance signal” between binding and expression data is low, that is when few genes 
(<1,000) have the TREG binding probability > 0.95, while enrichment analysis of “regulated” genes will 
provide higher statistical significance when the signal is strong (>1,000 genes with TREG 
probability>0.95) such as it was the case with E2f1. This indicate that it is rational to use GRS as the 
default method since when the signal is strong, the outcome will not change depending on which 
method is used, and when the signal is weak, GRS has a higher chance of detecting it. 

Fig S4: Proportion of ENCODE TREG profiles enriched for genes associated with the Cell cycle GO 
term at a specific statistical significance cut-off (x-axis). For TREG profiles (TREG) the analysis was 
performed using logistic regression modeling of the probability of membership in the Cell Cycle gene list 
based on the TREG scores as implemented in LRpath methodology. For the binding peaks data (Peak), 
we first established the list of genes with a significant peak within (-10kb,+10kb) window around the 
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gene’s TSS. Then use Fisher’s exact test to calculate statistical significance of the overlap with the Cell 
cycle gene list. While this approach seems to be somewhat inefficient, it still recapitulates conclusions of 
TREG analysis that a large proportion of ENCODE binding profiles are enriched for Cell cycle genes. 

Fig S5: Number of peaks in ENCODE profiles for profiles with unusually conservative GRS analysis 
(blue lines in Fig S1). 

Table S1: ERα and E2F1TREG binding scores, gene specific concordance statistic, and TREG 
concordance scores for all genes. 

Table S2: Results of the LRpath enrichment analysis of ERα and E2F1 TREG signatures for all GO 
terms. 

Table S3: Results of the concordance analysis between E2+CHX and E2 differential gene expression 
profiles and all ENCODE TREG binding profiles. 

Table S4: Results of the concordance analysis between TREG ERα  up-regulation signature  and 
disease-associated differential gene expression profiles. 

Table S5: The genes with gene-specific concordance in the TREG ERα  up-regulation signature (p-
value(eg) <0.001), used for plotting heatmaps in Fig 8. 

Text S1: Supplemental results, discussion and methods. Results provide additional results, 
discussion and methods including the statistical properties of GRS methodology and detailed discussion 
of the EM algorithm used to estimate parameters of the mixture models. 
 

Tables 

Table 1: Statistical significance of LRpath enrichment of genes with high TREG binding scores for E2f1 
and ERα among differentially expressed genes (two-tailed FDR<0.01) for E2 and E2+CHX differential 
gene expression profiles. The analysis was performed using LRpath methodology. 

Transcription Factor E2 E2+CHX 

E2f1 7.0x10-79 1.6x10-7 

ER 6.2x10-13 1.0x10-76 

 

Table 2: P-values for TREG concordance analysis between TREG binding profiles (E2f1 and ERα) and 
differential gene expression profiles (E2 and E2+CHX). 

Transcription Factor E2 E2 + CHX 

E2f1 1.1x10-162 2.2x10-13 

ERα 1.2x10-28 9.1x10-124 

 

Table 3: Rankings base on the “inhibitory potential” of top 5 CMAP perturbagens for ER+ and ER- 
DRGEPs, and ERα TREG signature. Stars (*) indicated statistically significant inhibition. 
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Compound ER+ ER- ERα 

pimozide 1* 10* 128 

resveratrol 2* 4* 151 

monobenzone 3* 2* 268 

chlorpropamide 4* 27* 236 

deferoxamine 5* 7* 70 

trifluridine 14* 5* 160 

methotrexate 19* 3* 181 

etoposide 27 1* 59* 

tamoxifen 100 110 4* 

fulvestrant 112 30 1* 

oxaprozin 135 162 5* 

raloxifene 266 209 2* 

corticosterone 278 303 3* 

 

 

 


