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ABSTRACT 
Unsupervised identification of patterns in microarray data has 
been a productive approach to uncovering relationships between 
genes and the biological process in which they are involved. 
Traditional model-based clustering approaches as well as some 
recently developed model-based mining approaches for 
integrating genomic and functional genomic data rely on one’s 
ability to determine the correct number of clusters or modules in 
the data. In this paper we demonstrate that the performance of 
such methods in general can be significantly improved by 
accounting for uncertainties inherent to the process of identifying 
the optimal number of clusters in the data. We demonstrate that 
the Bayesian averaging approach to clustering via infinite mixture 
model offers a more robust performance than the traditional finite 
mixture model in which the optimal number of clusters is 
determined using the Bayesian Information Criterion. This 
performance improvement is demonstrated through a simulation 
study and by the analysis of a relatively large microarray dataset. 
Finally, we describe the novel heuristic modification of the Gibbs 
sampler used to fit the infinite mixture mode that effectively deals 
with issues of slow mixing.   
Keywords 
Guides, instructions, authors kit, conference publications. 

1.INTRODUCTION 
Unsupervised identification of patterns in microarray data has 
been a productive approach to uncovering relationships between 
genes and the biological process in which they are involved. 
Conceptually, unsupervised learning from microarray data can be 
done by identifying genes with similar expression patterns across 
different experimental conditions, identifying groups of 
experimental conditions or biological samples with similar 
expression profiles, or the two dimensional clustering that 
simultaneously clusters genes and biological samples. In this 
paper we will be talking mostly about identifying groups of genes 
with similar expression patterns (profiles) across different 
biological samples. Groups of such genes are said to be co-
expressed and they define patterns of expression. The utility of 
identifying such groups of co-expressed genes is in the 
assumption that the co-expression is a reflection of a shared 
regulatory mechanism driving similarities of expression profiles. 
Consequently, such groups of genes can be used as a starting point 
for dissecting expression regulatory mechanisms [23], or 
functional annotation by assuming that functionally-related genes 
are most likely to be co-regulated [5]. 
Clustering methods used for unsupervised identification of co-
expressed genes can be loosely grouped into heuristic methods 
based on various distance measures, and model-based methods 

which are based on the probabilistic model of the data generation 
process. Given a distance measure, various heuristic methods 
proceed to organize gene expression profiles in a hierarchical 
fashion [3] or by partitioning them into a pre-specified number of 
clusters of co-expressed genes (e.g. K-means algorithm and Self-
organizing maps).  
In a model-based approach to clustering, the probability 
distribution of the observed data is approximated by a 
probabilistic model.  Parameters in such a model define clusters of 
similar observations and a cluster analysis is performed by 
estimating these parameters from the data.  The Finite Mixture 
(FM) model is the most common model-based approach to 
clustering [11]. In the context of microarray data, the FM model 
was introduced by [24]. In this approach, similar individual 
profiles are assumed to have been generated by a common 
underlying “pattern” represented by a multivariate Gaussian 
random variable. Given the correct number of mixture 
components (clusters) one can use an EM algorithm to estimate 
parameters of this model and then use the parameter estimates to 
assign individual profiles to appropriate clusters. Recently, 
various generalizations of the Bayesian mixture approach in terms 
of sophisticated Bayesian probabilistic models have been used to 
integrate various pieces of additional information in the process of 
identifying co-expressed genes [21;22], and to identify “modules” 
of co-regulated genes through the integrated modeling of 
combinatorial regulation mechanisms and gene expressions via 
context-specific Bayesian networks [19].  
The common denominator of the above-mentioned model-based 
methods is that they rely on the prior specification of the number 
of clusters in the data or on one’s ability to determine the correct 
number of clusters from the data. When the correct number of 
clusters is determined in the data analysis (e.g. by calculating 
Bayesian Information Criterion – BIC for models with different 
number of clusters), uncertainties related to its selection are 
generally not taken into account in the subsequent analysis. 
Previously we described the Bayesian Infinite Mixture (IM) 
model for the clustering of gene expression profiles [12] which 
effectively circumvents the problem of identifying the “correct” 
number of clusters. In our approach, the clusters are formed based 
on the posterior distribution of clusterings, which is generated by 
a Gibbs sampler. The clusterings generated by the Gibbs sampler 
can vary from one cycle to the next. Consequently, posterior 
probabilities with various features of the posterior distribution of 
clusterings are obtained after averaging over models with all 
possible number of clusters.   
In this paper we describe a new simulated annealing-motivated 
algorithm for sampling from the posterior distribution of 
clusterings that effectively solves the severe mixing problem 
exhibited by Gibbs sampler in high-dimensional situations. More 



BIOKDD04:  4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 2 

importantly, we demonstrate dramatic positive effects that 
Bayesian averaging can have on discovering patterns in 
microarray data through both a simulation study and the analysis 
of a relevant real-world microarray dataset. These results are 
likely to bear on further development of model-based 
unsupervised learning methods that rely on either the specification 
of the correct number of clusters or its estimation from the data. 

2.FINITE AND INFINITE MIXTURES 
MODEL BASED CLUSTERING FOR 
MICROARRAY DATA 
Suppose that T gene expression profiles were observed across M 
experimental conditions. If yij represents the expression 
measurement for the ith gene under jth experimental condition then 
yi=(yi1,yi2,…,yiM) represents the expression profile for the ith gene.  
In a mixture model, each gene expression profile is viewed as 
being generated by one out of Q different underlying expression 
patterns.  Expression profiles generated by the same pattern form 
a cluster of similar expression profiles.  If ci is the classification 
variable indicating the pattern that generates the ith mean 
expression profile (ci=q means that the ith expression profile was 

generated by the qth pattern), then a “clustering” is defined by a 
set of classification variables for all genes C=(c1, c2,…, cT).  
Underlying patterns generating clusters of expression profiles are 
represented by multivariate Gaussian random variables.  Profiles 
clustering together are assumed to be a random sample from the 
same multivariate Gaussian distribution. 
The hierarchical structure of the model is described in terms of a 
Directed Acyclic Network in Figure 1.  Nodes (squares) in this 
diagram represent random variables and directed arcs (arrows) 
specify conditional dependences between variables in terms of the 
directed Markov property, which states that a variable is 
conditionally independent of its non-descendants given its parents 
in the model. M=(µ1,…,µQ) and Σ=(σ1

2I,…, σQ
2I) denote means 

and variance-covariance matrices of multivariate Gaussian 
random variables defining Q underlying patterns respectively (I 
denotes the identity matrix). Variables (λ, τ), (β,φ), and α are 
hyper-parameters in prior distributions of model parameters M, Σ 
and C respectively. In the case of an FM model, the number of 
mixture components (Q) is considered fixed, while the IM model 
represents the limiting case when Q→∞. Details of the 
development of IM models and their relationship to mixtures with 
a Dirichlet process prior [4] are described elsewhere [15;17]. We 
have previously described Bayesian versions of both finite and 
infinite mixtures and corresponding Gibbs samplers [12;14]. In 
this paper, finite mixtures model were treated from a frequentist 
perspective and estimated using the EM algorithm as implemented 
in the MCLUST software [6]. The Gibbs sampler for estimating 
the posterior distribution of clusterings in the IM model is 

described below. The specification of the prior distribution for 
classification variables (C) determines whether the model 
represents finite or infinite mixtures. 

2.1Gibbs Sampler 
Gibbs sampler [7] is a general procedure for sampling 
observations from a multivariate distribution.  A Gibbs sampler 
proceeds by iteratively drawing observations from complete 
posterior conditional distributions of all components.  As the 
number of iterations approaches infinity, such a sequence 
describes observations from the joint multivariate distribution. In 
our case, we use the Gibbs sampler to estimate the joint posterior 
distribution of all parameters in our hierarchical model, given the 
data. We then use the marginal posterior distribution of 
clusterings to calculate posterior pairwise probabilities of 
coexpression (PPPC) for all pairs of expression profiles. Suppose 
that the sequence of clusterings (CB, CB+1,…,CS) was generated 
by the Gibbs sampler after B “burn-in” cycles. The pair-wise 
probabilities for two genes to be generated by the same pattern are 
estimated as: 

B-S
ccfor which  in"-burn"after   samples of #

 P ji
ij

=
= . 

Using these probabilities as a similarity measure, clusters of 
similar expression profiles are created using a traditional 
agglomerative hierarchical clustering with similarities between 
groups of profiles being defined using the complete linkage. 
Complete descriptions of the posterior conditional distributions 
used by the Gibbs sampler can be found in [12], with the slight 
modification of using an independent, equal variance, covariance 
structure while in the original model we used the different 
variance elliptical model. 

2.2Convergence of the Gibbs sampler 
Two aspects of the Gibbs sampler convergence that generally 

need to be assessed are the appropriateness of the “burn-in” 
period, after which a Gibbs sampler has attained its stationary 
distribution, and the mixing of the sampler, which describes how 
well a finite sample obtained by Gibbs sampler approximates the 
target distribution. It has generally been well documented that the 
simple Gibbs sampler often has very poor mixing properties in 
both FM and IM models [2;14], probably due to the multi-
modality of the posterior distribution. In such a situation, the 
sampler will be unable to describe the whole posterior distribution 
in a computationally feasible number of steps. The sampler will 
get trapped in a sub-optimal mode of the posterior distribution 
resulting in sub-optimal clustering results; or, because the sampler 
fails to visit all areas with significant posterior probabilities, 
confidence estimates in the generated clustering will be biased. 
Previously, we described a heuristic algorithm for “heating up” 
the Markov chain described by the Gibbs sampler by using 
“reverse annealing.” The optimal annealing schedule was chosen 
based on running a significant number of independent chains with 
different maximum annealing constants. Here we describe a new 
heuristic algorithm that adjusts the annealing exponent 
dynamically. Consequently, only a single run is needed to 
estimate the posterior distribution. 

If π(.) is the target posterior distribution, “reverse annealing” 
refers to “flattening” of the posterior distribution using the 

transformation 1   ,
)(
)( )()( <= ξ

ξ
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ξ
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Figure 1: Bayesian mixture model
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normalizing constant. Based on this general idea, if p(ci=j|C-i, Θ) 
is the conditional posterior probability of placing the ith profile 
into the jth cluster then “flattened probabilities” are defined as  

1   ,
)(

),C |jc (
 ) ,C|jc ( i-i)(

i-i <
Θ=

=Θ= ξ
ξ

ξ
ξ

K
pp .  

Since the mixing problem with the Gibbs sampler for the IM 
model can be particularly pronounced in its inability to generate 
new clusters, we keep track of the posterior probability of placing 
a profile in a new cluster. If this probability pnew is below the 
given threshold pmin, we decrease ξ by the value ξstep. If pnew is 
above pmin, we increase ξ by ξstep. Possible values of ξ are further 
constrained by the requirement that 0<ξmin<ξ<ξmax≤1. Our 
modified Gibbs sampler now proceeds by generating ncold samples 
from the unmodified conditional posteriors (cold cycles). It then 
generates a single sample using “heated” classification 
probabilities (heated cycle). The pnew from the heated cycle is 
used to increase or decrease the value of ξ by ξstep. However, only 
the sample from the last cold cycle (ncold cycles after the heated 
cycle) is used in the estimation of the posterior distribution of 
clusterings. In our simulations, we used ncold=5, ξmin=0.1, ξmax=1, 
pnew=0.01 and pstep=0.1. Due to the high computational complexity 
in the analysis of the cancer data, we used ncold=3. 

2.3Finite mixture model and EM algorithm 
We used the MCLUST package’s EMclust procedure to fit 

finite mixture models to our simulated and real-world data sets. 
The optimal number of clusters was selected by calculating the 
Bayesian Information Criterion (BIC) [18] for models for 
different number of clusters. The only model used in this study 
was the equal variance, independent, spherical shape (EII) 

covariance model [6]. The EMclust procedure fits the finite 
mixture model by first performing an appropriate model-based 
hierarchical clustering (in the case of the EII model this amounts 
to the Ward’s clustering algorithm). Resulting parameters are used 
as a starting point for the EM algorithm. Given the maximum 
likelihood estimates of the model parameters, profiles are 
assigned to clusters based on the posterior probabilities being 
generated by different mixtures components and the Maximum A 
Posteriory (MAP) hypothesis. To compare the performance of the 
FM model to the IM model, we also calculate FM model based 
PPPC’s as 

∑
=

===
Q

1k
jiij )kp(c)kp(c P , 

where p(ci=k) is the posterior probability of the profile i being 
generated by component k. 

3.SIMULATION STUDY 
First, we assessed the importance of Bayesian model-averaging in 
a simulation study. The study was designed to assess the 
performance of both FM and IM models in the frequentist sense. 
That is, we assessed the power of the two clustering methods to 
separate two different clusters in repeated experiments. We 
simulated 100 datasets each representing the clustering structure 
depicted in Figure 2. The heat map represents the values of the 
mean vectors for mixture components generating each profile. 
Red represents the value of 1 and the black represents the value of 
0. For example, in each dataset, profile “g1” was randomly drawn 
from the 15-dimensional Gaussian random distribution whose 
mean vector is equal to 1 in first 5 dimensions (e1,…,e5) and 0 in 
other 10 dimensions (e6,…,e15). The covariance matrix σ2I was 
used so that the data is compatible with our model assumptions. 
Data was simulated for σ∈c. This range allowed us to assess the 
performance of the two approaches in easy and progressively 
more difficult (i.e. noisier) situations.  

3.1Results 
Both methods performed very well in separating two larger 

and most divergent clusters (Cluster2 and Cluster4) under the 
conditions of our simulation study. Therefore, we are focusing on 
the more difficult task of separating clusters 1 and 2. Profiles from 
these two clusters differ only within first 5 dimensions 

(“experiments”) and Cluster1 is defined by only two profiles. The 
major question we are asking is how often can we expect the two 
clusters to be separated. We are assessing this question by 
observing the distribution of PPPC’s for the two profiles in 
Cluster1 in relation to PPPC’s between profiles in Cluster1 and 
Cluster2. In a sense we are assessing the ability of our clustering 
methods to correctly conclude that profiles in Cluster1 are 
different from profiles with Cluster2. However, unlike traditional 
statistical hypothesis testing procedures, we do not supply the 
labels for profiles that we are comparing. 

E1  E2  E3  E4  E5  E6  E7  E8  E9  E10 E11 E12 E13 E14 E15 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

E1  E2  E3  E4  E5  E6  E7  E8  E9  E10 E11 E12 E13 E14 E15 E1  E2  E3  E4  E5  E6  E7  E8  E9  E10 E11 E12 E13 E14 E15 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 2: Heat map of the clustering structure for the simulated data. Total of 
20 15-dimensional profiles belonging to 4 unbalanced clusters are generated in 
each dataset. 
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Results of this simulation study support our thesis that FM 
model-based clustering in which the number of clusters is chosen 

by the BIC criterion suffers because of its inability to incorporate 
in the results of the analysis the uncertainty inherent in the process 
of determining the number of clusters. Histograms in Figure 3 
show the “over-confidence” of the FM-based PPPC’s which is 
typical of a statistical analysis that fails to take into account all 
sources of uncertainty (i.e. variability). The majority of the 
PPPC’s generated by the FM model are clustered around 0 and 1 
indicating the high confidence in the separation or non-separation 
in all situations, even when they are wrong. For example, for the 
highest noise level, close to 70% of between cluster PPPC’s are 
greater than 0.9 indicating high confidence in the false conclusion 
that these profiles belong to the same cluster. On the other hand, 
PPPC’s seem to be more reflective of the level of evidence for 
separating the two clusters present in the data. While the level of 
confidence in the separation is being reduced as we move from 
the low-noise to high-noise data, the fraction of PPPC’s offering a 
high confidence in the false conclusion remains low even in the 
noisiest situation.  
We can further drive the analogy with traditional statistical 
hypothesis testing procedures by constructing Receiver Operating 
Characteristic (ROC) curves that assess the ability of a clustering 
method to correctly separate profiles from different clusters. We 
are again focusing of ability to separate profiles in Cluster1 from 
profiles in Cluster2. For a fixed cut-off point X, we consider that 
the clustering procedure is correctly concluding that a profile i 
from Cluster1 does not belong to Cluster2 if  
max{p(ci=cj for all profiles j from Cluster2}<X. We consider that 
the clustering procedure is incorrectly concluding that profile 1 

and profile 2 from Cluster1 do not belong in the same cluster if 
p(ci=cj)<X. The true positive rate (TPR) is the proportion of times 

that a correct decision is made and the false positive rate (FPR) is 
the proportion of times that an incorrect decision is made. As the 
cut-off X is increased from 0 to 1, both TPR and the FPR will 
increase. The area under the curve relating the TPR and FPR as X 
is increased from 0 to 1 describes the efficiency of a statistical 
procedure with the random decision-making having an area of 0.5 
while the ideal statistical procedure would have an area equal to 1.  
ROC’s for the FM and IM models for different noise levels are 
given in Figure 4. It seems that for each, except the lowest noise 
level, the IM model significantly outperforms the FM procedure. 

4.CANCER DATA ANALYSIS 
While the simulation study seems to indicate the importance 

of model averaging in the model-based cluster analysis, the 
question remains whether these advantages make any difference 
in the context of analyzing real-world data. Demonstrating 
advantages of one clustering method over another in the context 
of real-world data is complicated by the uncertainties related to 
the “correct” clustering which is generally not known. To address 
this question we reproduced the analysis described by [10]. They 
demonstrated how human cancer databases of microarray data 
could be used to study a molecular mechanism of cancer 
induction. In their study, they first identified 21 cyclin D1 target 
genes in in-vitro laboratory experiments. They followed up with 
an investigation of the relationship between CD1 and these 21 
genes in a cancer gene expression database [16]. The statistical 
significance of that association in the cancer data was established 
by showing that the distribution of Euclidian distances between 

Between Cluster
Within Cluster

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.ei

0.0

0.2

0.4

0.6

0.8

1.0

Between Cluster
Within Cluster

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.ei

0.0

0.2

0.4

0.6

0.8

1.0

Between Cluster
Within Cluster

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.fm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs3.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs35.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs4.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs45.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs5.ei

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mprobs6.ei

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Histograms of PPPC’s for pairs of profiles belonging to the same cluster (Within Cluster) and pairs of 
profiles belonging to different clusters (Between Cluster) in 100 simulated datasets for 6 different noise levels. 
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expression profiles of these gene and CD1 were higher then 
expected by chance (p-value=0.048 using a resampling version of 
the Kolomogorov-Smirnov test). The conclusion was that the in-
vitro signature of the CD1 overexpression is preserved in primary 
human tumors. We clustered the cancer expression data using the 
Euclidian distance, IM and FM models with the optimal number 
of clusters (56), elected by the BIC as described before (Figure 5). 
Based on results of these cluster analyses, two important points 
can be made: (1) just by a visual inspection of heat maps, it is 
apparent that model-based clustering approaches (both FM and 
IM) created “cleaner” groupings of genes with similar expression 
patterns than the Euclidian distance-based hierarchical clustering 
procedure. (2) the over-confidence of the FM model, noted in the 
analysis of the simulated data, is evident in this analysis as well. 
The consequence of such an over-confidence is that the FM model 
identifies only 2 of the 21 genes of interest to be significantly 

associated with CD1. On the other hand, the IM model identifies 7 
of them.  

The distribution of the Euclidian distances also seems to suggest 
that only the associations between CD1 and three of the 21 genes 
of interest are above the experimental noise. In the context of the 
Kolmogorov-Smirnov (KS) analysis of Euclidian distances 
(Figure 3A in Lamb et al. 2003), there are indications that actually 
7 to 10 of the 21 genes are contributing to the significance of the 
association. However, the statistical significance of this 
observation is impossible to assess within their framework. These 
results suggest that the IM model is capable of identifying most 
biologically meaningful relationships in the data by integrating the 
power of the model-based approach to pull information from the 
whole dataset while accounting for the uncertainty introduced by 
not knowing the number of clusters in the data. 

5.DISCUSSION 
In this paper we demonstrated the utility of Bayesian model 

averaging in model-based clustering of microarray data in a 
simulation study and as it is applied to answer a relevant 
biological question using a relatively large microarray dataset. We 
demonstrated that the performance of the traditional finite mixture 
clustering approach in which the optimal number of clusters is 
chosen using the BIC suffers from over-confidence in false 
conclusions probably due its inability to account for uncertainties 
related to the choice of the right number of clusters. The 
significantly better performance of the equivalent IM model in 
both the simulation study and the analysis of the real-world data is 
most likely due to its ability to estimated the posterior distribution 
of clusterings by effectively averaging over models with all 
possible number of clusters. The consistency and the precision of 
the results obtained by the IM approach also suggest that our 

heuristic modification of the Gibbs sampler effectively alleviates 
the problem of slow mixing.  

We have previously demonstrated the advantages of using 
model-based clustering approaches over the traditional distance-
based heuristic algorithms [14;25]. Model-based methods allow 
for the precise treatment of the statistical characteristics of the 
data under investigation, such as replicated observations. 
Furthermore, when compared to traditional distance measure-
based hierarchical clustering algorithms, they are more efficient in 
using the information from the whole datasets instead of using 
two vectors of observations at a time. This advantage has been 
nicely demonstrated in our analysis of cancer data in Figure 5 as 
well. Additionally, when compared to partitioning heuristic 
algorithms, such as the K-mean algorithm and the SOM’s, they 
allow for estimation of the number of clusters by assessing the 
relative fit of models with different numbers of clusters.  
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Figure 4: ROC curves describing the ability of the two models to separate the Cluster1 from Cluster2.
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Recently introduced generalizations of the traditional mixture 
models, based on the context-specific Bayesian networks [20], 
allow for identifying more complex relationships between 

different genes as well as incorporating other types of the data in 
the analysis [21;22]. In this respect, our analysis strongly suggests 
that the general practice of fixing the number of clusters, 
components, or modules in terms of [19], before fitting 
appropriate models might need some modifications. One possible 

solution for this problem could be the adaptation of the IM 
paradigm for such complex models. Another possible solution 
could go along the line of averaging results obtained by fitting 

models with different number of components in a post-hoc 
analysis. 

It is important to notice that the uncertainties in the process 
of identifying the correct number of clusters are not necessarily 
the only source of uncertainties that are not taken into account by 
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Figure 5: A) Cluster analysis based on the Euclidian distances (left), IM model PPPC’s (middle), and FM 
model PPPC’s (right). B) Histograms of corresponding similarity measures for all genes with CD1. Circles 
represent the similarity measures for the 21 genes identified in the laboratory experiments.
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the traditional FM approach. In high-dimensional situations, such 
as the cancer data analyzed in this paper, the log-likelihood 
maximized by the EM algorithm is almost certainly multi-modal 
and using any kind of strategy for choosing the “optimal” starting 
position will not guarantee that the solution will be globally 
optimal. Since the BIC calculation is based on results of the EM 
algorithm, these types of computational inadequacies will 
contribute to the overall uncertainty in the selection of the 
“optimal” number of clusters. Furthermore, such computational 
problems can result in sub-optimal clustering given the “optimal” 
number of cluster. Using different variants of the EM algorithm 
designed to alleviate this problem [13] can sometimes help, but 
the convergence to the globally optimal solution is still never 
guaranteed. In this respect, a properly mixing Gibbs sampler can 
offer another advantage due to its ability to describe the whole 
posterior distribution instead of searching for the highest mode of 
the likelihood function. We performed a limited evaluation of the 
convergence properties of the overall estimation approach (data 
not shown) and determined that EM convergence issues were 
probably not a factor in our simulation study due to the relatively 
simple clustering structure, but they were likely an additional 
source of uncertainty in the analysis of the cancer data.  
The purpose of our analysis was not to disparage the BIC as the 
criterion for choosing the right number of clusters, but rather to 
demonstrate the problem of the whole approach in which the right 
model is chosen based on a preliminary analysis of the data, and 
where the uncertainties inherent in this process are not propagated 
into the final estimates of uncertainties about conclusions made 
based on the whole analysis process. Empirical studies have 
shown that the criterion works quite well in identifying the correct 
number of mixture components [1]. On the other hand some 
recent evaluations showed that an alternative approach of 
statistical hypothesis testing-based determination of the number of 
clusters [8] is more robust with respect to the deviation from the 
assumption of the models for individual mixture components. 
Unfortunately, these evaluations were made assuming only the 
simplest possible model for the calculation of the BIC, as implied 
by the K-means algorithm. It remains unclear if these advantages 
persist after using the complete FM approach for choosing the 
right covariance structure as well as the right number of clusters 
as proposed by the authors of MCLUST [6], or in the situation 
when the basic covariance structure implied by the K-means 
algorithm is correct, as was the case in our simulation study. 
Altogether, the BIC approach remains one of the dominant criteria 
for choosing models in statistical practice, and it is not clear that 
any alternative method for choosing the right number of clusters 
will significantly improve the overall FM performance. On the 
other hand, we showed that the IM model offers an elegant way 
around the issue of selecting the right number of clusters in the 
context of model-based clustering. 
Finally, although our heuristic Gibbs sampler modification has 
been performing very well in all situations we encountered so far, 
it is not clear how closely does the modified sampler approximate 
the posterior distribution defined by the IM model. This is 
problematic since some of the nice conceptual features of the 
Bayesian IM framework depend on being able to sample from the 
true posterior distribution defined by the model. For example, the 
meaning of the posterior pairwise probabilities is not clear unless 
we can claim that they are derived from the hierarchical statistical 
model in Figure 1. We can still use them as a high-quality 
distance measure, but their direct probabilistic interpretation is 
lost. Some work has been done on developing alternative MCMC 

methods for fitting conjugate infinite mixture models [9]. 
However, to the best of our knowledge, alternative MCMC 
samplers for non-conjugate models, such as the model described 
here, have not yet been developed.  
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