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Abstract 

The advent of DNA microarray technology has added a new dimension to the field of 

molecular carcinogenesis research. DNA microarrays have been used as a tool for 

identifying changes in gene expression and genomic alterations that are attributable to 

various stages of tumor development. Patterns defined by expression levels of multiple 

genes across different types of cancerous and normal tissue samples have been used to 

examine relationships between different genes, and as the tool for molecular 

classification of different types of tumor. The analysis of relatively large datasets 

generated in a typical microarray experiment generally requires at least some level of 

computer-aided automation. On the other hand, the large number of hypotheses that are 



implicitly tested during the data analysis, especially when identifying patterns of 

expression through supervised and unsupervised learning approaches, require careful 

assessment of statistical significance of obtained results. These basic requirements have 

brought to the fore front the need for developing statistical models and corresponding 

computational tools that are specifically tailored for the analysis of microarray data. Such 

models need to be able to differentiate between faint, yet statistically significant and 

biologically important signals, and patterns that are generated by random fluctuations in 

the data. In this endeavor, it is important to keep in mind the abundance of already 

existing statistical and machine learning methodologies which can serve as the starting 

point for developing more specialized techniques. Here we describe different uses of 

DNA microarray technology in molecular carcinogenesis research and related 

methodological approaches for analyzing and interpreting DNA microarray data obtained 

in such experiments.  

1) Introduction 

Novel molecular biology technologies for performing large numbers of biological 

measurements in parallel provide an unprecedented opportunity for uncovering the 

molecular basis of cancer and mechanisms of cancer induction by carcinogens. The large 

volume of data generated by experiments utilizing such assays, as well as relatively high 

experimental noise often associated with them require a careful statistical/computational 

analysis. The most prominent of such novel technologies are DNA microarrays, which 

facilitate the assessment of a whole transcriptome of a cell population in single 

experiments.  



DNA microarrays are glass slides on which a large number of DNA probes, each 

corresponding to a specific mRNA species, or a genomic DNA region, are placed at 

predefined positions. DNA probes are either synthesized in-situ 1,2, or they are pre-

synthesized and then spotted on the slide 3. Two most commonly used technologies are 

Affymetrix in-situ synthesized microarrays and the spotted microarray technology 

developed at Stanford University.  In gene expression experiments RNA is extracted 

from the biologic sample, reverse transcribed into cDNA and fluorescently labeled.  Such 

labeled cDNA representing the transcriptome of the biologic sample is then hybridized on 

the microarray. The amount of the labeled cDNA that hybridizes to each probe on the 

microarray is proportional to the relative abundance of the corresponding cDNA. The 

expression of all genes is then quantified by measuring the intensity of the dye used to 

label the RNA. The most common experimental protocol used with spotted microarrays 

consists of labeling two RNA extracts with different dyes and co-hybridizing the samples 

to the same microarray (two-channel microarrays). While this approach introduces some 

restrictions on the experimental design 4, the overall principles of the two major 

technologies are the same.  

Quantification of individual gene expressions proceeds by various normalization 

procedures whose role is to remove systematic biases and to rescale measurements on 

different arrays to be directly comparable. The development of an appropriate 

normalization procedure is still an active research topic 5-7. Normalized data is used to 

identify genes differentially expressed in different tissues, to identify groups of genes 

with similar pattern of expression across different biological states and to construct rules 

for classifying different biological samples based on their expression profiles.  



In general, computational analysis of microarray data can be separated into the single-

gene at a time analysis, in which the data for each gene is analyzed independently of the 

data for any other gene, and multiple-gene at a time analyses in which the data for all or a 

sub-group of genes is jointly analyzed. In a single gene at a time analysis, the goal is 

generally to identify genes that are differentially expressed in different tissues. In a 

multiple gene at a time analysis, the information from multiple genes is combined to 

identify global patterns of expression that can offer additional insights not available by 

looking at genes separately. 

2. Applications of microarrays 

Although the most common application of microarrays is in monitoring gene 

expression, the other extremely relevant application in the context of cancer research is 

the microarray based Loss of Heterozygosity (LOH) analysis 8,9.  

Gene expression data generated using microarrays is generally used to identify genes 

that are differentially expressed under different experimental conditions, identify groups 

of genes with similar expression profiles across different experimental conditions (co-

expressed genes) and classify the biologic sample based on the pattern of expression of 

all or a subset of genes on the microarray. Differentially expressed genes as well as 

groups of co-expressed genes can be used to hypothesize which pathways were involved 

in a particular biologic process. Additionally, clusters of co-expressed genes can be used 

to hypothesize the functional relationship of a clustered gene, and as a starting point of 

dissecting regulatory mechanisms underlying the co-expression. In the context of tumor 

classification, gene expression profiles have been used as complex biomarkers defining 

the tumor as well as different sub-classes of tumor. 



Genomic instability is central to the development of cancer.  Gene amplifications and 

deletions are a major factor in tumorigenesis.  Copy number changes are important in the 

understanding of cancer biology, diagnosis, and progression. These genetic alterations 

can lead to expression changes in oncogenes or tumor suppressor genes, respectively.  

Changes in gene expression as a result of these alterations are likely to be the driving 

force behind many of the amplifications and deletions that occur giving the transformed 

cell a growth advantage.   

Comparative genomic hybridization (CGH) is a technique that analyzes the global 

genetic alterations in cells.  The procedure detects both deletions and amplifications of 

the genome and allows for the global analysis of genetic alterations in tumors. The 

traditional CGH uses differentially labeled test and reference genomes that are co-

hybridized to normal metaphase chromosome spreads.  The fluorescent ratio of the 

labeled DNAs is then measured over the length of the chromosomes to determine regions 

of gain or loss.  Analyzing the data indicates amplified and deleted regions of the genome 

based on the intensity of each fluorescent signal.  Analyzing numerous samples 

demonstrates the frequency of the genomic aberrations. One disadvantage of the 

technique is that the sizes of the alterations need to be fairly large, for example on the 

order of 5 to 10 megabases, to be detected 10.  An additional problem is the procedure is 

very labor intensive and not amenable to analyzing large numbers of samples.  Other 

methods, including microsatellite marker analysis and fluorescent in situ hybridization 

provide a higher resolution map, but are also labor intensive and may not be applicable to 

whole genome analysis. 



The advantages of newly developed microarray based CGH assays are numerous. 

This technology is theoretically capable of assessing relatively small genomic aberrations 

and is capable of the high-throughput analysis. A clear demonstration of the improved 

resolution of the microarray CGH over the traditional approach was offered in 

microarray-based CGH analysis of the SKBR3 breast cancer cell line 11. In these 

experiments, microarray-based CGH analysis improved the resolution of amplicons in the 

8q regions over the traditional analysis 12. 

3. Analysis of gene expression microarrays 

At this point we assume that the quantification of flourescence intensities of 

individual spots on the microarray has been completed. The analysis of microarray data 

in most situations proceeds by normalizing data, identifying genes whose expression 

changes between different different experimental conditions and performing multivariate 

analyses, such as clustering and classifying.  

a. Data normalization 

The first step in the computational analysis of microarray data almost always consists 

of performing various transformations with the aim of reducing systematic variability. 

Although the optimal procedures are still being developed, a certain concensus is 

emerging on the appropriate ways to perform initial data normalizations in microarray 

experiments 13. In the case of the spotted two-channel arrays, two major sources of the 

systematic variability are the spot-specific local background fluorescence and the 

difference in the overall intensities of the two fluorescent dyes (Cy 3 and Cy5). The 

process of normalization generally proceeds by subtracting the local background and 

centering the log-ratios of two channel intensities around zero. In Figure 1, log-ratios of 



background-subtracted intensities in two channels are plotted against their average. The 

line describing the average behavior of data is the local regression (loess) curve 14. 

(Insert Figure 1 here) 

Initially, the common practice was to center the log-ratios by subtracting the overall 

median value. However, it is fairly obvious from the Figure 1 that such an adjustment is 

likely to “over-adjust” high-intensity spots and “under-adjust” the low intensity spots. It 

turns out that the local regression based normalization which subtracts the fitted loess 

curve value from the corresponding log-ratio generally does a better job of reducing this 

channel bias 15,16 and is gaining wide acceptance. In the case of the Affymetrix data, 

similar strategy of scaling data on all microarrays in the experiment to a “control” chip so 

that all chips have equal median intensities has been commonly used. Recently, 

alternative approaches based on the intensity-specific normalizations have been 

introduced as well 17. 

b. Detecting differentially expressed genes across different samples 

The purpose of the statistical analysis in the process of identifying differentially 

expressed genes is to assess the reproducibility of observed changes in gene expression 

by assessing their statistical significance. This is done by comparing the magnitude of the 

observed changes in gene expression to the magnitude of random fluctuations in the data. 

For example, in the traditional t-test analysis, the average differential expression 

observed in replicated experiments is divided by its standard error and the obtained 

quantity (t-statistic) is compared to its theoretical distribution under the assumption that 

the observed average differential expression is a result of random fluctuations in the data. 

In the context of the cancer-related microarray data, paired t-test and the step-down 



Bonferonni adjustment was used to identify genes whose expression is affected in testis 

of mice that were gestationaly and lactationaly exposed to diethylstilbestrol 18. 

Furthermore, identifying genes that are differentially expressed between different classes 

of tumor tissues is often a first step in identifying relevant genes for the purpose of cluster 

analysis and tumor classification 19,20. 

For any kind of analysis to be successful in assessing reproducibility of observed 

results, it is necessary to apply an appropriate experimental design in the process of 

gathering data. The key requirements for the appropriate experimental design are that it 

addresses all relevant sources of variability. Suppose that we want to identify genes that 

are differentially expressed between two different types of tumors using two-channel 

spotted microarrays. The logical requirement for the implicated genes is that they are on 

average differentially expressed between the two tissue types. Several decisions that are 

made prior to performing experiments are going to significantly impact the 

reproducibility of the results of the experiment regardless of the subsequent statistical 

analysis. Assuming that we performed appropriate normalization of the data, two 

unavoidable types of variability will be present in the data. One is the technical 

variability that is introduced in the process of isolating and labeling RNA, fabrication of 

microarrays, scanning process, etc. The other is the biological variability between the 

different tissue samples of the same kind used in the analysis.  

In most biological applications, the biologic variability dominates the technical 

variability. For example, the variability between different measurements of the same 

tissue sample will be much smaller than the variability between different tissue samples 

of the same kind (e.g. same tumor type from multiple individuals). To reduce the overall 



variability in our hypothetical experiment, one could be tempted to use only one tumor 

sample of each kind and perform several technical replicates. Due to the lower variability 

than if different tumors are used in replicated experiments, such an approach is likely to 

result in more genes being pronounced differentially expressed. The obvious problem is 

though, that such results will not generalize to the whole population of these two types of 

tumors and consequently will not be reproducible.  

On the other hand, there are several sources of variability that can be efficiently 

removed from the estimates of differential expression using the factorial Analysis of 

Variance (ANOVA) approach. Two such sources that are more commonly addressed in 

the statistical analysis of microarray data are gene-specific dye effects and the array 

effect. These effects are manifested in the fact that fluorescence measurement of one dye 

are reproducibly higher than the other dye in gene-specific fashion meaning that the 

effect varies from one gene to another. If this source of variability is not taken into 

account when the experiment is being designed, it could result in falsely implicating non-

differentially expressed genes as well as in missing truly differentially expressed genes. 

One way to deal with this problem is to perform “dye-flips”, meaning that different RNA 

samples from the same tissue type are labeled with different dyes. If the number of 

replicates labeled with Cy3 is equal to the number of replicates labeled with Cy5, this 

will remove the systematic bias from the analysis. However, if this new source of 

variability is not extracted in the ANOVA analysis, it can seriously inflate the variability 

of the differential expression estimates.  

In the factorial ANOVA one estimates contributions of different systematic sources 

of variability and extracts them from the estimates of the effect of interest. For example 



the simplest linear model that allows for the extraction of the gene-specific dye effect 

using ANOVA is 

Yijk=µ + Ti +Dj+Ak+εijk 

Where Yijk is the expression measurement on the kth microarray of the tissue type i 

labeled by the jth dye (j=1 for Cy3 and j=2 for Cy5). µ is the overall expression level for 

this gene, εijk  is the random error in Yijk unexplained by factors in the model, and Ti is 

the effect of the ith tissue type on the expression level adjusted for the dye effect (Dj) and 

microarray (Ak) measuring the differential expression of the gene between different tissue 

types. By estimating differential expression after adjusting for the dye effect, one 

effectively removes the variability introduced by “flipping dyes” from the analysis.  A 

more thorough review of experimental design issues in microarray experiments can be 

found elsewhere 21. Issues relating to using ANOVA in analyzing microarray data are 

discussed in the context of the fixed-effect model 22, and in the context of the mixed-

effect model 23. 

Statistical methods for identifying differentially expressed genes have come a long 

way from initial heuristic attempts 24, through the realizations that rigorous statistical 

analysis of replicated data is needed 25, to sophisticated statistical modeling using 

frequentist and Bayesian approaches 26. Generic statistical methods of the analysis of 

variance 22 and mixed models 23 are complemented with specialized maximum likelihood 

approaches 27, and Bayesian analysis flavored approaches 28-30. While the consensus 

about the optimal method has still not been reached, the intense statistical research is a 

promising sign.   



One of the most daunting issues in the process of identifying differentially expressed 

genes is the severe problem of multiple comparisons. Presently, expression level of up to 

more than 20,000 different genes can be assessed on a single microarray. Searching for 

genes whose expression change is statistically significant corresponds to testing 20,000 

hypotheses simultaneously. If each of these tests is performed at the commonly used 

significance level of alpha=.05, meaning that we expect for 5% of genes that are not 

differentially expressed to be falsely implicated, we expect on average  1,000 falsely 

implicated genes. The simplest way to deal with this multiple comparison problem is to 

divide the significance level by the number of hypotheses testing (Bonferonni 

adjustment). In the case of 20,000 hypotheses, this will mean that individual hypotheses 

will be tested at the significance level of alpha=.0000025. Such a level is virtually 

unattainable in simple experiments with few experimental replicates. While the multiple 

comparison issue cannot be avoided, a better balance can be struck between the need to 

avoid false positives and false negatives. The False Discovery Rate (FDR) adjustment 31 

keeps the balance between the specificity and the sensitivity of microarray data analysis 

30. In contrast with traditional adjustments that control the probability of a single false 

positive in the whole experiment, the FDR approach controls the proportion of false 

positives among the implicated genes. For example, if 20 genes are selected using 

FDR=.05, one of them will on average be a false positive regardless of the total number 

of genes. The traditional (e.g., Bonferonni) adjustment will limit the probability of a 

single false positive to .05, resulting in a possibly conservative testing procedure.  



c) Identifying clusters of co-expressed genes 

i) Overview of clustering approaches 

The high-dimensional nature of microarray data has prompted the widespread use of 

various multivariate analytical approaches aimed at identifying and modeling patterns of 

expression behavior. In cancer research, cluster analysis has been commonly utilized to 

identify groups of genes with a common pattern of expression across different tissues as 

well as to group tissues with similar genetic expression profiles. Results of the cluster 

analysis have been used to infer common biologic function and the co-regulation of co-

expressed genes in response to mutagenic treatments 32 and P53-specific DNA damage 

response 33, to identify genes groups of genes whose pattern of expression can serve as 

the marker of various stages in tumor progression 19 and to assess the possibility of 

classifying different kind of tumors based on their gene expression profiles 34-37. 

Relevance of different clusters obtained by hierarchically clustering breast carcinomas 

was confirmed by correlating them with the mutational status of the P53 gene and the 

clinical outcome 20. 

(Insert Figure 2 here) 

The power of the clustering approach in interpreting patterns of expression of groups 

of genes is demonstrated in Figure 2. The data in Figure 2 comes from the publicly 

available yeast cell-cycle dataset 38. If we just observe expression patterns of two genes in 

Figure 2A, about whom we know very little, we would conclude that their expression 

profiles are highly correlated. This might lead us to conjecture that these two genes are 

participating in the same crucial point of the cell cycle progression. On the other hand, if 

we knew that there are two different expression patterns that our to genes could be 



associated with, given in Figure 2B, we would probably conclude that these two genes 

are actually representative of two different expression patterns. If we don’t know of the 

existence of such two patterns but are given 74 genes that define these to patterns, a 

simple hierarchical clustering procedure will easily identify two clusters in Figure 2C and 

2D, defining two patterns in Figure 2B and associating our two genes to distinct clusters. 

Since the advent of the microarray technology virtually all traditional clustering 

approaches have been applied in this context and numerous new clustering approaches 

have been developed.  

(Insert Figure 3 here) 

 Hierarchical clustering procedures were the first to be applied in the analysis of 

microarray data 39 and are still the most commonly used clustering procedure in this 

context. Such methods rely on the calculation of pairwise distances or similarities 

between the gene profiles. Various correlation coefficients are the most commonly used 

measures of similarity. Hierarchical agglomerative methods generally proceed by 

grouping genes and groups of genes based on such pairwise measures of similarity. In 

this process, the distance between two groups of genes is calculated as a function of 

individual pairwise distances of genes in two groups using different “linkage” functions. 

“Single-linkage” corresponds to the minimum pairwise distance between genes in two 

different groups, “complete-linkage” corresponds to the maximum distance, and 

“average-linkage” corresponds to the average distance 40. Virtually every publication 

related to utilizing microarrays for gene expression profiling of tumor tissues and cell 

lines contains a figure with genes and/or tissues organized in this fashion.  



Partitioning approaches, on the other hand, work by iteratively re-assigning profiles 

in a pre-specified number of clusters with the goal of optimizing an overall measure of 

fit. Two of the most commonly used traditional approaches are k-means algorithm and 

self-organizing map (SOM) method, first applied in this context by Tavazoie et al. 41 and 

Tamayo et al. 42, respectively. One of the problems with clustering methods that are 

based on pairwise distances of expression profiles is that, at least in the initial steps, only 

data from two profiles is used at a time. That is, the information about relationships 

between the two profiles and the rest of the profiles is not taken into account although 

these relationships can be very informative about the association between the profiles. 

The major drawback of partitioning approaches is the need to specify the number of 

clusters. For example, given that we know that there are 2 clusters in the data in Figure 3, 

both k-means and SOM’s will uncover the two clusters of interest. However, while in the 

hierarchical structure in Figure 3, it is immediately obvious that there are two clusters of 

data, both k-means and SOM’s require this to be known prior to the analysis. 

In a model-based approach to clustering, the probability distribution of observed 

data is approximated by a statistical model.  Parameters in such a model define clusters of 

similar observations and the cluster analysis is performed by estimating these parameters 

from the data.  In a Gaussian mixture model approach 43, similar individual profiles are 

assumed to have been generated by the common underlying “pattern” represented by a 

multivariate Gaussian random variable 44-45. In the situation where the number of clusters 

is not known, this approach relies on ones ability to identify the correct number of 

mixture components. A mixture based method for clustering expression profiles that 

produces clusters by integrating over models with all possible number of clusters was 



developed 46.  In this approach, the joint distribution of the data is modeled by a specific 

hierarchical Bayesian model and the posterior distribution of clusterings is generated 

using a Gibbs sampler.  

Model-based clustering procedures have been shown to have desirable properties in 

various comparative studies examining properties of different clustering procedures 46,47. 

Recently, finite mixture models as implemented in the AutoClass software package 48 

were used to refine the clustering of gene expression profiles of human lung carcinomas 

produced by the hierarchical procedures 49. A similar method was applied  to identify 

genes related to malignancy of colorectal carcinomas 50.    

ii) Assessing statistical significance of observed patterns 

A reliable assessment of reproducibility of observed expression patterns and gene 

clusters is one of the burning issues in cluster analysis.  Since cluster analysis has 

generally been used as an exploratory analysis tool, establishing statistical significance of 

observed results has not been a priority. However, just like in the case of establishing the 

statistical significance of differential expressions, an assessment of the reproducibility of 

observed patterns is necessary before one can take them seriously. Unfortunately, 

establishing the statistical significance of different features of observed clusters is a much 

more difficult problem than establishing differential expression of individual genes. Two 

exceptions are the significance of the existence of the overall clustering structure and the 

significance of pairwise associations between individual profiles.  However, even the 

pairwise association between individual profiles is a difficult problem if one assumes 

possible but unknown clustering structures.  

(Insert Figure 4 here) 



This can be illustrated in the analysis of the two genes of interest in Figure 2. Suppose 

we are asking the question whether or not these two genes are co-expressed. Or, in other 

words, do expression profiles of these two genes belong to the same underlying pattern of 

expression? If we use correlation as a measure of similarity of these two profiles, the 

Pearson’s correlation turns out to be equal to 0.83. In the context of randomly chosen 

pairwise correlations for all genes in this dataset this turns out to be statistically 

significant. As a result, we could be tempted to say that these two genes are co-expressed. 

However, if we analyze the whole group of genes using hierarchical clustering (Figure 2 

and 3), it seems that the two genes belong to two distinct patterns of expression. In this 

respect some of the newly developed statistical approaches offer a glimmer of hope. For 

example, in the Bayesian Infinite Mixture Model approach, the posterior probability of 

any particular clustering feature (say gene1 and gene2 are co-expressed) can be directly 

assessed from the output of the Gibbs sampler 46. Such a model-based approach is 

capable of producing an objective measure of confidence in any such feature after 

incorporating sources of uncertainty in the process of clustering microarray data (i.e. 

experimental variability and unknown number of clusters).  

When we apply the Bayesian Infinite Mixture (BIM) in the context of two genes in 

Figure 1, the result is rather unambiguous. First of all the posterior distribution of 

“distances”, which are in this context defined as 1-Posterior Probability of Co-expression, 

indicates strongly that there are actually two clusters in the data (Figure 4). Furthermore, 

the posterior probability of the feature of interest, which is that these two genes are co-

expressed, after averaging over models with all possible number of clusters, is equal to 0 

indicating that data actually offers strong evidence that these two genes are not co-



expressed. The higher precision of the model based on posterior probabilities calculated 

from the BIM is illustrated by comparing distributions of between- and within-cluster 

distances for the two clusters in Figure 3 obtained by simple correlation and base on BIM 

model.  

d) Gene expression based tumor classification 

 Classification of tumor samples based on gene transcription profiling has been 

one of the earliest and one of the most promising areas of microarray technology 

applications in cancer research. The concept of using the gene expression profiles as 

complex markers in classifying different types of caners has been initially demonstrated 

by classifying different types of acute leukemias 51 and distinguishing between the tumor 

and normal colon tissues 36. This approach has also been shown to have a great potential 

for clinical applications in the areas of tumor classification and toxicity screens of 

potential drug compounds 52-54.  

In general, a “classifier” is a mathematical formula that uses as input values of 

distinct features of an object and produces an output that can be used to predict to which 

of the predefined classes the object belongs. In terms of the gene expression data based 

tumor classification, the objects are tissue samples and the features are genes and their 

expression levels. The construction of a classifier generally proceeds by selecting an 

informative set of genes that can distinguish various classes, choosing an appropriate 

mathematical model for the classifier and estimating parameters of the model based on 

the “training set” of tissues whose classification we know in advance. Finally, the 

specificity and the sensitivity of the classifier is tested on the data that was not used in the 

process of constructing the classifier.  



The simplest classifier one can envision consists of a single gene and a cut-off value 

xc  such that a sample is classified in one class if the expression level of this gene is 

smaller than xc and in the other class if it exceeds xc. In the case when multiple 

features/genes are used, measurements from all of them are again summarized into a 

single number by using a variety of multivariate models. Such a summary value is then 

used in a similar fashion as one would use a single gene value. A hypothetical example of 

advantages of using expression levels of multiple genes for classifying “metastatic” and 

“non-metastatic” tumors is depicted in Figure 5. While expression of any single of the 

two hypothetical genes in Figure 5 are not sufficient for reliably predicting whether the 

sample is “metastatic” or “non-metastatic” (Figure 5C and 5D), their combination 

constructed by subtracting the expression of the Gene2 from the expression of Gene1 can 

separate the two classes almost perfectly (Figure 5E). 

Various approaches to selecting informative genes can be coarsely grouped in 

methods that assess the classification abilities of a single gene at a time and methods that 

choose groups of genes based on their joint ability to distinguish between different tumor 

classes. The most common methods in practice to date have been based on choosing 

genes in one-gene at a time fashion based on the statistical significance or the magnitude 

of their differential expression between different classes of tumors 19,20. The 

combinatorial explosion of possible number of different groups of genes generally makes 

the second approach of choosing groups of genes based on their joint discriminative 

capacity very difficult. Comparing all possible sub-groups among 20,000 different genes 

is clearly impossible. Alternatives to the exhaustive comparison are heuristic 

optimization techniques such as Genetic Algorithm 55 or constructing groups of gene in a 



step-wise fashion. Both of these approaches will not necessarily identify the optimal 

group of genes but have been shown to often perform quite well in this context. 

Mathematical models that have been used so far in constructing tumor classifiers can 

generally be divided in non-parametric methods such as k-nearest neighbor (KNN) 55,  

Fisher’s linear discriminant analysis (FLDA) 56, and support vector machines (SVM) 57 

and the methods based on the statistical model for data in individual classes such as 

various Gaussian model based classifiers, logistic regression 58, and artificial neural 

networks (ANN) 59. Excellent descriptions and introductions into various classification 

approaches are given elsewhere 60,61 .  

(Insert Figure 5 here) 

In a KNN classifier for the two-classes situation, the distance of the sample 

expression profile of the sample to be classified from individual profiles of all training 

data is first calculated. The sample is then classified to the class having the most 

members within the k-closest neighbors of the sample. Fisher’s linear discriminant 

function is based on identifying the direction in the k-dimensional space (where k is the 

number of genes used for the classification) that separates the two classes the best in the 

sense that it maximizes the ratio of between-classes and within-classes variability. SVM 

classifiers are based on the idea of the “optimal separating hyper-plane” in the k-

dimensional space. It chooses the hyper-plane so the distance from the hyper-plane to the 

closest point in each class is maximized. For example, the linear (hyper-plane) SVM 

when k=2 (two-genes classifier) will select the straight line such that the traditional 

Euclidian distance between the line and the closest points in two classes is maximized. In 

this sense the linear SVM classifiers are similar to the Fisher’s linear discriminant 



function based classifier except that the two methods use different criteria to select the 

separating hyper-plane. ANN-based classifiers will generally fit a non-linear hyper-plane 

to separate two classes of objects (tissues in our case). Probabilistic models based 

classifiers generally proceed by estimating the distribution of the features of the classes 

of objects to be classified. The classification is then based on the identification of the 

most likely of such distribution that have had generated the sample to be classified. In the 

hypothetical example in Figure 5, all above mentioned procedures will likely perform 

very well. Strictly speaking the linear discriminator depicted in Figure 5A, 5B, and 5C 

corresponds to the Fisher’s linear discriminant. 

Validation of the predictive accuracy of any particular classifier is an essential step in 

the classification analysis. The optimal way of validating a classifier’s performance is to 

test it on the samples that were not used in any way in the process of building the 

classifier. A commonly used strategy is to perform a “leave-one-out” analysis in which 

each of the samples is left out in the process of building the classifier and then used to 

test its predictive ability. Average predictive ability of the classification procedure can 

then be summarized as the proportion of the correctly classified samples in the “leave-

one-out” analysis. Ideally, predictive ability is then compared to the predictive ability of 

the equivalent classifier on the randomized data. This is particularly important when we 

have different number of samples in different classes. For example, a trivial classification 

rule of always classifying samples into a single class will have 90% correct predictive 

rate if 90% of the samples that are being classified come from this class.  

How to identify the best set of genes as well as questions related to the optimal 

mathematical model for constructing classifiers are two of the intense research areas of 



computational biology. Results of a comparison study of several traditional classification 

methods in relation to microarray data based tumor classification 62 suggest the need to 

base classifiers on statistical theory. For example, it was shown that the maximum 

likelihood-based classifier clearly outperforms a popular heuristic equivalent 63.    

An alternative approach to generating optimal classification features is to use some of 

the dimension-reduction techniques. The most commonly used method is the Principal 

Component Analysis (PCA). In the PCA analysis, one seeks a small number of linear 

combinations of the initial features that in a sense condense the predictive information of 

the whole set of features. Linear combination of k values (x1,…,xk) is defined as 

a1x1+a2x2+…+akxk where (a1,…,ak) are corresponding linear coefficients. PCA identifies 

linear combinations of features that maximize the variability between different objects. 

While this heuristic argument behind PCA works in many situations, it some situations it 

fails completely. For example, in our hypothetical example in Figure 5, the linear 

combination with the maximum variability is approximately equal to Gene1+Gene2 and 

it actually results in worse separation than any of the original variables (Figure 6). 

Another related dimension-reduction technique is the Partial Least Squares (PLS) method 

64 which extends the PCA approach to incorporate the information about the correct 

classification in the process of identifying optimal linear combinations. Because the 

method chooses linear combinations that accentuate the relationship between the features 

and the classification of the training object, it generally results in a better classifier. 

Generally, use of such procedures in the tumor classification setting has an intuitive 

appeal that one can use information from a large number of genes without experiencing 



problems with the classification methods that perform best when the number of samples 

is significantly larger than the number of features used by the classifier 

4. Analysis of CGH microarray data 

The computational analysis of microarray CGH data is to a large extent similar to the 

analysis of gene expression arrays. The data still needs to be normalized, and the changes 

in copy numbers of different DNA regions represented on the microarray needs to be 

established by performing the statistical analysis. Similarly, as in the case of expression 

arrays, data can be clustered to identify patterns of common amplifications and deletions 

across all tissue samples. CGH microarray data can be also used to design classifiers in 

exactly the same way as described for the gene expression data. 

One specific feature that distinguishes this type of data is the correlation introduced 

by the linear organization of genome that can be utilized to improve the sensitivity of 

such analyses. The basic premise of such analysis is that the closer two DNA regions are 

genomically, the more likely it is to that if one of them is affected by a gross genomic 

aberration, the other one will be affected as well. One way to explore such correlations is 

to use moving average estimates of fluorescence intensities of different DNA probes. 

Moving averages are calculated by averaging intensities of DNA probes corresponding to 

several neighboring DNA loci. The amount of “smoothing” induced by such a strategy is 

dependent on how many neighboring loci are averaged. Since such averages have a 

potential of completely concealing genomic aberrations covered by a single probe, one 

has be careful about using it. Presumably, such an analysis can be used within a battery of 

different analytical approaches with performing experimental replicates still being the 

preferred approach to reducing variability in fluorescence measurements. 



5. Integrating current knowledge and various types of experimental data 

Integration of the current knowledge with the new experimental data is done every 

time a biologist interprets results of a new experiment. Interpreting results of a 

microarray experiment that can yield hundreds of thousands data points in the traditional 

informal way can be rather difficult. In this situation, one is forced to limit her/his 

attention to a subset of genes that were indicated in the initial statistical analysis. 

However, the sensitivity of the statistical analysis can be critically affected by the 

incorporation of the prior knowledge. For example, if one can make assumptions 

concerning the subset of genes most likely to be affected, this subset can be analyzed 

separately with higher statistical power due to fewer hypotheses that are being tested. 

Formal methods of integrating accumulated knowledge and information in the analysis 

are being developed. An example of such methods is the method for scoring likelihood of 

whole pathway involvement in the process under investigation based on integrating the 

analysis of expression levels of genes involved in the pathway and the existing pathway 

information 65. Similarly, benefits of integrating genomic, functional genomic and 

proteomic data have been demonstrated 66-69. For example, a weak evidence of co-

regulation implied by co-expression identified in a cluster analysis can be strengthened 

by the result from a two-hybrid assay that indicated the two corresponding proteins 

interact or by the shared regulatory elements in their promoter region. Statistical models 

capable of integrating such diverse data types have been proposed by several 

investigators 70-73, while the use of joint proteomic and functional genomic data after 

perturbing a biologic system to reverse engineer the underlying network of molecular 



interactions, in the context of the “systems biology” paradigm, has been demonstrated 

74,75. 

a. From co-expression to co-regulation 

Transcriptional regulation is one of the crucial mechanisms used by a living system to 

regulate protein levels. It is estimated that 5-10% of the genes in eukaryotic genomes 

encode transcription factors  that are dedicated to the complex task of deciding where, 

when and which gene is to be expressed. Mechanisms applied by these factors range from 

the recruitment and the activation of the transcriptional pre-initiation complex to 

necessary modulations of local chromatin structure. Two major determinants of gene 

expression specificity seem to be the composition of their cis-regulatory modules, and the 

presence/absence and phosphorylation status of trans-acting regulatory factors that 

interact with DNA regulatory modules and each other. However, the exact nature of the 

interactions between various components of the regulatory machinery is still largely 

unknown.  Identification of co-expressed genes by a cluster analysis of gene expression 

profiles has often been utilized as a first step in identifying factors regulating expression 

of different genes. On the other hand, using information about presence of known 

regulatory elements can be applied to refine the cluster analysis of expression profiles 

and the simultaneous identification of known regulatory elements causing such co-

regulation . 

An indirect indication of co-regulation of co-expressed genes is the tendency of co-

expressed genes to participate in the same biologic pathway as well as their tendency to 

code for proteins that interact with each other. In both of these situations, the mechanism 

of co-regulation might not be at the level of common cis-regulatory elements, yet the 



need for co-regulation and the actual presence of them is obvious. Actually, it has been 

shown that the particular expression regulatory mechanism can sometimes be a better 

determinant of the protein function than even its three dimensional structure. All these 

suggest that analytical methods capable of integrating information about regulatory 

sequences, biologic pathways and protein-protein interactions, and expression data 

generated in microarrays experiments will be better able to create biologically 

meaningful clusters of genes than clustering expression data alone. 

b. Integrating microarray CGH and expression data 

In terms of cancer research, tumors represent a naturally perturbed genomic system. 

Concurrent genomic and functional genomic investigations of tumors by the high-

throughput microarray approaches can be used to dissect genetic networks involved in the 

process of tumorigenesis. In this context, microarrays can be used to both characterize the 

genomic aberrations and the gene expression in different tumors. Several models 

mentioned before are capable of integrating such information into a single powerful 

analysis. 

The next logical step in high-through-put analysis is to combine the cDNA array 

analysis with CGH analysis of tumor samples.  This has been accomplished in several 

recent reports.  Fritz et al. 76 applied CGH and cDNA based arrays to liposarcomas and 

found that tumor subtypes revealed more effectively by clustering genomic profiles than 

by clustering expression profiles.  Weiss et al. 77 have shown that in gastric 

adenocarcinomas, microarray analysis of genomic copy number changes can predict the 

lymph node status and survival outcome in patient samples.  In breast tumors, Pollack et 

al. 11 found that 62% of highly amplified genomic regions contain over expressed genes 



and in general that a 2-fold change in copy number corresponds to a 1.5-fold change in 

mRNA levels as detected on the cDNA arrays.  Additionally, they report that 12% of all 

gene expression changes in breast tumors are directly attributed to changes in gene copy 

number.   

In all these reports, the integration of CGH and gene expression data has been 

achieved by analysing them separately and correlating results of individual analysis. 

However, it is likely that unified analysis strategies, akin to already mentioned statistical 

models for joint analysis of expression and regulatory sequence data, will prove 

beneficial in this context as well.  

c. Modeling genetic networks 

The ultimate goal of integrating different types of experimental data and current 

biological knowledge into a mathematical framework is the construction of genetic 

network models that will help us understand and predict the global dynamics of complex 

biological processes that define a living cell. The traditional molecular biology approach 

to characterizing roles of different cellular components has been to collect information on 

the single gene, single protein or single interaction at a time.  However, some 

characteristics of behavior of the complex network of biochemical interactions defining 

the living system are unlikely to be recovered by such local approaches 74,78. For 

example, the functional role of a gene whose expression is regulated by several 

transcription factors cannot be fully understood without simultaneously monitoring for 

the presence and/or activation status of all of them.  The ability of DNA microarrays to 

generate at the same time measurements on a large number of molecules participating in 

such a network allows for assessing interactions of a substantial portion of the global 



network. The complete strategy for such analysis consists of a mathematical model 

describing interactions of various components of the network, experimental approaches 

to perturb the network, biologic assays for quantitating the effects of such perturbation 

and the inference procedures for estimating parameters of the assumed model 79. 

Mathematical models describing dynamics of biochemical networks include the 

deterministic ordinary differential equation (o.d.e.) based models of kinetics of coupled 

chemical reactions 80,81, stochastic generalization of such models following the 

Gillespie’s algorithm 82 for simulation approach to the chemical master equations 83-86, 

Boolean network models which reduce the information about the abundance of various 

interacting molecules to a binary variable representing on/off (0/1, present/absent) states 

87, and Bayesian networks 88 and probabilistic graphical models in general 89. All of these 

mathematical models have certain advantages and disadvantages depending on the goal 

of the analysis, available data and the knowledge about interactions of various molecules 

in the network. A thorough overview of these models in the context of genetic regulatory 

networks can be found elsewhere 90. 

 The specification of an o.d.e. model requires detailed knowledge of the modeled 

interactions and is intended for examination of the overall dynamics of the system when 

individual relationships between components of the network are more or less known. In 

this context, the data is primarily used for checking predictions based on such models and 

not necessarily for reconstructing the networks themselves. Similar conclusions can be 

made about various stochastic approaches to simulating behavior of such networks. 

However, such stochastic generalizations are likely to offer a more realistic result in 

biochemical networks involving molecules of very low abundance, as is the case in gene 



expression regulation. In contrast to these quantitative models, the Boolean network 

model offers a relatively straightforward approach to reconstructing the topology of the 

network based on discretized data (e.g. the expression data for each gene at each 

experiment is reduced to two states expressed/not expressed). However, it has been 

argued that the binary 0/1 representation of network components is inadequate in many 

situations.  

(Insert Figure 7 here) 

Probabilistic graphical models, Bayesian Networks in particular, seem to be capable 

of capturing the rich topological structure, integrating components operating on various 

scales and representing stochasticity of both underlying biologic processes and the noise 

inherent in the data. In this statistical approach, the behavior of the network is expressed 

as the joint probability distribution of measurements that can be made on elements of the 

network. The structure of the network is described in terms of the Directed Acyclic 

Graph (DAG) 91.  Nodes in the network correspond to the elements of the network and 

directed edges specify the dependences between the components. DAG specifies the 

dependence structure of the network through the Markov assumption that the node is 

statistically independent of its non-descendants given its parents. Well-established 

inferential procedures allow for the data-driven reconstruction of the network topology 

and specific interactions along with the corresponding measures of confidence in the 

estimated structure and model parameters 92.  

The hypothetical Bayesian network in Figure 7A describes the interaction of four 

different genes. Assuming that G1, G2, G3 and G4 are variables the describing level of 

expression of these genes, one of the probabilistic statements encoded by the topology of 



this network is that the expression level of Gene4 is independent of expression levels of 

Gene1 and Gene2 given the expression level of Gene3. In other words, while the 

expression levels of Gene1 and Gene2 do affect the expression level of Gene4, they do it 

only through their effect on Gene3, which in turn affects the expression level of the 

Gene4. By just looking only at the expression of these four genes across different 

experiments, they would all appear to be correlated to various degrees. The goal of the 

analysis could then be to infer the most likely network topology explaining these 

correlations. For example, the network in Figure 7B would induce a similar pattern of 

correlations between these 4 genes. However, effects of Gene1 and Gene2 on Gene4 is 

direct and not through their regulation of Gene 3. Given a sufficient amount of data, one 

can distinguish between these two structures and establish the most likely topology 

describing their interactions which could then be tested experimentally.  

 The ability to incorporate various levels of prior knowledge through informative 

priors about the structure and the local probability distributions 93 allows Bayesian 

networks to potentially serve as the model of choice for encoding the current knowledge 

and the analysis of new data on the background of the current knowledge.  Predictions 

about the future behavior of the network can take into account all sources of 

uncertainties: uncertainty about the estimated parameters of the networks, structure of the 

network and the stochastic nature of the biologic system modeled by the network.  
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Figure 1. Scatter plot of log-ratios vs average log-intensity in a typical microarray 

experiment. The line represents the local regression line used for centering log-ratios. 

Figure 2. Clustering cell-cycle expression data A: two individual gene expression profile alone; 

B: the same two profiles in the background of two major underlying expression patterns C,D: 

clusters defining underlying patterns of expression. 

Figure 3. Hierarchical clustering of the cell cycle genes from Figure 2. Each line in the color-

coded display corresponds to the expression profile of one gene with the red color denoting high 

expression and green color denoting low expession. 

Figure 4. Right: distribution of between clusters and within clusters distances based on pair-wise 

correlations. Left: distribution of between- and within-clusters distances based on posterior 

probabilities of expression calculated from the Bayesian Infinite Mixture Model 

Figure 5. Classifying hypothetical tumor tissues based on the expression levels of two genes. A) 

Scatter plot of data for 100 samples. B) Underlying probability distribution of expression data for 

two classes. C) Separating two classes based on Gene1 data only. D) Separating two classes 

based on Gene 2 data only. E) Optimal linear classifier for the two classes based on the linear 

combination of Gene1 and Gene2 expression data. 

Figure 6. Principal component based classifier 

Figure 7. Two alternative Bayesian networks explaining the correlation structure between 

expression measurements of four hypothetical genes. 
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Figure 4
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