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Abstract 

The practice of identifying differentially expressed genes by comparing the observed differential expressions 

to variability expected due to random fluctuations in observed differential expression is becoming predominant 

in the analyses of DNA array data.  In order to estimate the total variability in the system, more than one 

experimental replicate is needed.  Generally, the probability of detecting differentially expressed genes is 

increasing as the number of replicates increases.  Other factors influencing the probability of detecting 

differentially expressed genes are the magnitude of differential expression, the magnitude of the random 

fluctuations in the observed differential expressions and the homogeneity of the level of random fluctuations 

across different genes.  We have constructed curves representing the magnitude of the differential expression 

levels that will result in 80% chance of detecting the corresponding differential expression as a function of the 

number of experimental replicates and the standard deviation.  We described how to use these curves to 

determine the needed number of experimental replicates based on a “pilot” experiment. From characteristics of 

these curves we concluded that the homogeneity of the level of random variation in observed differential 

expressions is of utmost importance for being able to detect differential expressions of moderate magnitudes by 

using a reasonable number of experimental replicates.  In the case when the variability is homogeneous, there is 

a substantial benefit in using 3 vs 2 microarrays but not much benefit can be seen in further increasing the 

number of replicates.  In the situation when the variability is not homogenous, the substantial improvement can 

be seen with each additional experimental replicate. 

Introduction 

One of the most commonly used approaches for simultaneous measuring expressions of a large number of 

genes consists of competitive hybridization of differentially labeled cDNA probes on cDNA-printed glass slides 

(Schena et al. 1996; Cheung et al. 1999) called cDNA microarrays.  The process of obtaining actual readings of 

expression levels from a cDNA microarray is subject to several sources of variability (biologic variability, 

printing of slides, preparation of fluorescent probes, measurement of the fluorescent light intensity) that will all 

be represented in the random fluctuations of observed expression levels.  To discern the true differentially 

expressed genes from differences generated by random fluctuations in the data, observed differences need to be 

assessed in the context of expected distribution of differences for genes that are not differentially expressed.  

Statistical hypothesis testing allows us to quantify the confidence in conclusions made about observed 

differences in expression levels.  

In the context of statistical hypothesis testing, the conclusion that a gene is differentially expressed is based 

on rejecting the null hypothesis 

H0: Gene is not differentially expressed in two cell cultures 
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in favor of the alternative hypothesis 

H1: Gene is differentially expressed in two cell culture 

at a specified significance level α.  Significance level α is the upper limit for the probability of rejecting H0 in 

favor of H1 when H0 is actually true (Type I error).  The commonly used significance level of α=0.05 translates 

into 95% confidence of making a correct conclusion that a gene is differentially expressed when H0 is rejected.  

Identifying all differentially expressed genes in a microarray corresponds to testing this type of hypothesis for 

each gene. While the probability of committing a Type I error for each gene separately is equal to α, the 

probability of falsely concluding that at least one of the genes on the array is differentially expressed when 

actually none of them are differentially expressed (experiment-wise Type I error) will be much higher.  

Statistical multiple hypothesis (or multiple comparison) procedures are designed to control the experiment-wise 

Type I error rate in a situation when multiple hypotheses are tested. 

Chen, et al. 1997 developed statistical procedure aimed at identifying differentially expressed genes using a 

single microarray data and by using differential expressions of “house-keeping” genes to construct the reference 

distribution of non-differentially expressed genes. More recently, Newton et al present a bayesian approach to 

identifying differentially expressed genes using data from a single microarray.  Kerr and Churchill, 2000A 

presented a whole family of experimental designs in the framework of linear models for microarray experiments 

involving experimental replicates. Same authors (Kerr and Churchill, 2000B) also described how to analyze data 

obtained in such experiments.  

Claverie, 1999, has first noted the importance of multiple comparison procedures when identifying 

differentially expressed genes. He proposed t-test with the Sidak’s multiplicity adjustment as the appropriate 

approach to identify differentially expressed genes with a specified confidence. Dudoit et al., 2000 provided a 

more complete treatment of the problem by proposing the use of the permutation-based step-down multiple 

comparison procedure (Westfall and Young, 1993) as the method of choice for identifying differentially 

expressed genes. 

Assuming that an appropriate statistical model is identified, the probability of successfully identifying a 

differentially expressed gene (statistical power) for a fixed confidence level depends on three factors: The 

magnitude of the true differential expression, the magnitude of random fluctuations (random noise) in the 

experimental system and the number of times the experiment is replicated.  The statistical power generally 

increases with the increase of the magnitude of the true differential expression and with the increase in the 

number of experimental replicates. It decreases with an increase in the magnitude of random fluctuations in the 

experimental system. In this article we provided means for determining the needed number of experimental 
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replicates needed to detect differential expressions under a realistic statistical model and for a range of random 

fluctuation levels likely to be encountered in experimental systems that are currently used.  

Statistical Model and Analysis 

In general, the data to be analyzed consists of expression levels of N genes observed under two different 

experimental conditions by replicating the experiment n times (n microarrays used).  zijv represents the 

fluorescence intensity observed for the ith gene from the jth cell culture on the vth microarray (i=1,…,N; j=1,2; 

v=1,…,n), and xijv=ln(zijv) is the corresponding log-transformed expression level.  Traditionally, the “differential 

expression” refers to the gene specific ratio of the observed fluorescence intensities for two cell cultures under 

investigation 
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Differential expression measures the relative representation of a gene in the two samples and it is relative 

insensitive to various sources of variability associated with the variability in features of the DNA “spots”, 

hybridization conditions, etc (Eisen and Brown, 1999).  Making conclusions about the differential expressions is 

equivalent to making conclusions about differences between the log-transformed fluorescence intensities 

Liv = xi1v – xi2v; i = 1,…,N; v=1,…,n. 

We are assuming that that each of the observations in the data set can be written as 

xijv=µijv+ηijv, 

where µijv corresponds to the mean log transformed expression level for the ith gene and the jth  on the vth 

microarray, cell line while ηijv is the random error associated with the whole process of obtaining the expression 

measurement. Log-transformed observed differential expression can then be written as 

Liv=(µi1- µi2) + εiv,   i=1,…,N, 

where µi1- µi2 represents the “true” underlying log-transformed differential expression and  εiv represents the 

random error resulting from the biologic variations in gene expressions and the random noise introduced in the 

experimental procedure.  In our model we assume that εiv’s are distributed as independent normal random 

variables with the mean zero and the variance σi
2.  By using Liv’s in our analysis, instead of the log-transformed 

fluorescence measurements we are actually extracting the effects of differences in morphology and DNA content 

of spots representing same genes on different arrays as well as other experimental factors that might affect 

magnitude of fluorescence measurements but do not affect their ratios.  This approach corresponds to treating 
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spots on individual arrays as “Blocks” (Kerr et al. 2000A) and determines the paired t-test as the appropriate 

statistical analysis for identifying statistically significant differential expressions. 

Testing Statistical Hypothesis 

 The ith gene is said to be differentially expressed in the two cell cultures if µi1- µi2 ≠ 0.  Whether this is the case is 

established be testing the null statistical hypothesis: 

H0: µi1- µi2 = 0   

vs. the alternative hypothesis 

H1: |µi1- µi2| > 0. 

This test of hypothesis is performed by comparing the paired t-test statistic 
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and si is the estimate of the standard deviation of Liv, to its theoretical distribution under the assumption that the 

null hypothesis is true (null distribution).  In this case, t-distribution is the appropriate null distribution.  The null 

hypothesis is rejected at the significance α if t*>tdf,γ/2. tdf,γ/2 is (γ/2)*100th percentile of the t-distribution with the 

df degrees of freedom, and γ=1-(1-α)1/N
  is the adjusted significance level for the test of hypothesis.  The estimate 

of the standard deviation (s) and the degrees of freedom of the reference t-distribution (df) will depend on the 

assumptions that can be made about the homogeneity of variances of log-transformed differential expressions 

across different genes.  It turns out, as it is shown in the following section, that the issue of variance homogeneity 

is of crucial importance for the ability of the statistical procedure to detect differentially expressed genes with a 

limited number experimental replicates. 

Estimating Standard Deviation 

The optimal approach to calculating the estimate of the standard deviation (s) depends on the whether it can 

be assumed that the standard deviation is equal for all genes or not. If the standard deviation of log-transformed 

differential expressions is assumed to vary across different genes, the gene specific estimate of standard 

deviation can be calculated as 
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The degrees of freedom for the reference t-distribution will then be equal to n-1. On the other hand, if the 

standard deviation of log-transformed differential expressions is assumed to be homogeneous across different 

genes, the common estimate of standard deviation can be calculated  by combining individual estimates given in 

(1) 
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The degrees of freedom for the reference t-distribution will in this case be equal to N(n-1). 

It turns out, as it is shown in the results section, that the effect of the difference in the degrees of freedom 

depending on the homogeneity of variance assumption on the probability of detecting differentially expressed 

genes is tremendous.  

Statistical Power 

The probability of detecting a certain number of genes that were differentially expressed with a prescribed 

level of confidence represents statistical power of the procedure.  In other words, it is the probability of rejecting 

the null hypothesis that the gene is not differentially expressed in the situation when the gene is actually 

differentially expressed.  In our model, the t-statistic under the alternative hypothesis has a non-central t-

distribution with the noncentrality parameter 

1/nσ
µµ

nc i2i1 −
=  (2) 

Hence the probability of rejecting the null hypothesis for any differentially expressed gene is given by 

Power= Prob(tdf,nc > tγ/2,df). 

If O<N is the number of differentially expressed genes, than the probability of detecting at least K of them using 

the paired t-test is  

Power(K)=1- k-Dk
1-K
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The relationship between the Power of detecting a differentially expressed gene and the magnitude of the 

noncentrality parameter is illustrated in the Figure 1.  An increase in the noncentrality parameter will generally 

result in an increase in the power of detecting the corresponding gene.  The effect of the magnitude of the mean 

log-transformed differential expression (µi1- µi2) and the level of the noise in the system (σ) on the Power through 

their effect on the noncentrality parameter is obvious from the equation (2).   

The effect of the number of experimental replicates (n) is two-fold: first, the increase in the number of 

replicates will result in an increase in the noncentrality parameter (2), and second, an increase in the number of 

replicates will result in an increase in degrees of freedom of the reference t-distribution resulting in an additional 

increase in Power.  Both of these effects are demonstrated in the Figure 1.  The increase in the sample size from 5 

to 10 replicates will first reduce the cut-off point for the t-statistic to reach in order for the corresponding null 

hypothesis to be rejected (green vertical line vs the red vertical line) due to the difference in shapes of t-

distribution with 4 and 9 degrees of freedom (dashed green and red line respectively).  Second, the probability of 

t-statistic reaching this threshold (Power), which corresponds to the area under the curve representing the 

distribution of t-statistic under the alternative hypothesis (solid curves) to the right of the corresponding threshold 

line is affected by the change in degrees of freedom, and the size of the noncentrality parameter of the 

corresponding noncentral t-distribution. 
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Figure 1.  Effect of the sample size on the Power 

0 1
t

n=10 significance n=5 significance

  
Green Dashed Line – Distribution of t-statistic under the null hypothesis with n=5 (t-distribution with 4 degrees of freedom) 
Red Dashed Line – Distribution of t-statistic under the null hypothesis with n=10 (t-distribution with 9 degrees of freedom) 
Green Solid Line – Distribution of t-statistic under the alternative hypothesis with n=5 (noncentral t-distribution with 4 degrees of freedom 

and the noncentrality parameter of 6.1) 
Red Solid Line – Distribution of t-statistic under the alternative hypothesis with n=10 (noncentral t-distribution with 9 degrees of freedom 

and the noncentrality parameter of 8.6) 
Blue Solid Line – Distribution of t-statistic under the alternative hypothesis with n=5 (noncentral t-distribution with 4 degrees of freedom 

and the noncentrality parameter of 8.6) 
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Results 

The magnitude of the mean log-transformed differential expression (µi1-µi2) that will result in 80% 

chance (Power) of detecting the corresponding differential expression as a function of the number of 

experimental replicates (n) and the standard deviation (σ) at the significance level of α=.05 is shown in 

Figure 2.   

Tremendous effect of homogeneity of the variability across different genes is best illustrated by 

comparing Figure 2A and 2B.  In the situation when the standard deviation in log-transformed 

differential expressions varies across different genes (Figure 2A), minimum of 5 replicates are needed to 

detect 10 fold differential expressions at even minimal levels of variability.  On the other hand, in the 

case of homogenous standard deviation (Figure 2B), there is a reasonable chance of detecting a single 2-

fold differentially expressed genes at low but achievable levels of variability in the system.  

Furthermore, chance of detecting all 10 differentially expressed genes with 2 replicates in the 

homogenous variability case (Figure 2D), for a fixed level of variability, is similar to the 10 replicates 

situation in the non-homogeneous case (Figure 2C). 

Figure 2A: Figure 2B: 

Detecting any single differentially expressed Detecting any single differentially expressed 

 gene when standard deviation varies across gene when standard deviation is equal for 
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Figure 2C: Figure 2D: 

Detecting all differentially expressed Detecting all differentially expressed 

 genes when standard deviation varies across genes when standard deviation is equal for 

different genes for all genes 
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Conclusions 

One of the biggest promises held by microarray technology is that it will allow for dissection of genetic 

regulatory networks (Lander, 1996, Lander, 1999).  Karp et al. (1999) proposed a method for designing optimal 

microarray experiments with this purpose in mind.  In order for their method to be applicable one has to be able to 

identify “red” (induced), “green” (repressed) and “yellow” (unchanged) genes.  False interpretation of differences 

in fluorescence intensities observed in microarray experiments is likely to make the whole analysis much more 

difficult.  On the other hand the reliable identification of “red”, “green”, and “yellow” genes by statistical analysis 

requires a certain number of experimental replicates to be performed.  In this article, we described statistical 

criteria for determining the needed number of experimental replicates. 

The number of replicates that need to be used in experiments utilizing DNA Arrays will ultimately 

be affected by numerous factors not mentioned in this paper (cost of performing the experiments and 

availability of biological samples being two potential factors).  In this respect, results presented here 

can be used as a guideline of what kind of results we can expect from our experimentation.  On the 

other hand if a general advice should be given based on our results, in the case when we can expect 
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homogeneous variability, there is a substantial benefit in using 3 vs 2 microarrays, but not much benefit 

can be seen in increasing the sample size from 3 to 10 microarrays.  The approach of using the 

minimum of three experimental replicates is in line with conclusions made by Ting Lee et al. 2000.  

Furthermore, three having three replicates would allow us to factor out the dye effect that might be an 

important source of bias in cDNA microarrays (Dudiot et al. 2000).  In the situation when the 

variability is not homogenous, the substantial improvement can be seen in each additional experimental 

replicate. 

To use presented curves to precisely determine the needed number of replicates, an estimate of the 

total variability in the system is needed.  The standard deviation of the log-transformed differential 

expressions (σ) quantifies the total variability in the experimental system relevant to our conclusions.  

If σ can not be predicted a priori, a pilot experiment will be needed to estimate sigma.  Ideally, the pilot 

experiment consists of two replicates of the experiment in which mRNA obtained from two 

independent samples of the biologic system of interest is independently extracted and differentially 

labeled and co-hybridized on a DNA array.  From such a pilot experiment, we can estimate σ as well as 

investigate if the assumption of the variance homogeneity is reasonable.  Based on such analysis, and 

other considerations (cost-benefit, anticipated level of differential expression of interest, etc) we can 

identify the optimal number experimental replicates for our specific experiment. 

Strictly speaking, results presented here apply only to the model with the Gaussian distribution of 

the random variations in observed log-transformed differential expressions.  While this is a reasonable 

assumption on its own, even if this model is not correct, due to the central limit theorem, with the 

increase in the number of replicates the distributions of t-statistics used in our analysis will approach 

their distributions under the Gaussian model regardless of the true underlying distribution of the data.  

This allows us to use results presented in a more general setting than is required by the model used in 

obtaining these results. 
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